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Abstract. A lightweight way to design a trusted type-checker is to let it
return a certificate of well-typing, and check it a posteriori (for instance
Agda and GHC adopt this architecture internally). Most of the time, these
type-checkers are confronted sequentially with very similar pieces of input:
the same program, each time slightly modified. Yet they rebuild the entire
certificates, even for unchanged parts of the code. Instead of discarding
them between runs, we can take advantage of these certificates to improve
the reactivity of type-checking, by feeding parts of the certificates for
unchanged parts of the original program back into the new input, thus
building an incremental type-checking.

We present a language-independent framework making possible to turn a
type system and its certifying checking algorithm into a safe, incremental
one. It consists in a model of incrementality by sharing, a generic data
structure to represent reusable derivations based on contextual LF, and a
general-purpose language to write certifying programs.

Introduction

Verifying the well-typing of real-world programs is a critical matter: on it relies
their safety, and it encourages good programming practices: modularity, early
bug catching. ... But it is a complex operation, for the compiler designer and for
the human operator:

For the compiler designer Type systems are usually presented in a declarative
manner as a set of inference rules, together with proofs that all programs accepting
a derivation in this system respect a certain dependability claim, the famous
“progress and preservation” pair. Yet, actual algorithms of verification often differ
very much from their declarative description. This is of course true when programs
are provided with little type annotations (“type inference”), in which case the
missing information has to be algorithmically synthesized, but is also true in
many cases for mere “type checking”, or explicit “church-style” calculi. Take for
example dependent type systems, relying on definitional equality on types, or
type systems with subtype polymorphism: both feature a rule of the form
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(for a given notion of <) which is not syntax-directed. The implementer has to
turn the declarative system into an algorithm, and convince himself that both
are equivalent. This task is highly non-trivial and non-modular: for instance,
how to infer the type of a System T recursor rec(M, N,z y. P), in presence of
subtyping? The problem is that we have to guess a type A more general than
that of V and P, while giving that type to variable y. A well-known algorithm if
the subtyping relation forms a complete lattice is to iterate the typing of P with
the join of the previously computed and the new type until a fixpoint is reached.
The most common option is to formally prove the equivalence, i.e. that the
(typing) relation is actually a function. Although these proofs can be difficult to
obtain, it is the most satisfactory because it allows to take only the result of the
algorithm into consideration. But let us choose another path: derivations in the
declarative systems, if they cannot always be easily inferred, can be verified if
provided by an oracle. We can tell cheaply if it is wrong by verifying the witness
typing derivation it provided. Let us then imagine a type-checker to be the pair
of (i) an untrusted procedure 1 M to infer a typing derivation out of program
M; it does not have to be complete, or even sound, and (7i) a trusted and fast
kernel check(D) to verify these derivations w.r.t. a given set of inference rules
Y. This is a certifying scheme (see [1]). If check(T M) = true then there really is
a derivation D for M, but the converse is not necessarily true: function 1 could
fail, or return an incorrect derivation. Explicitly generating the derivation in the
declarative system has the following advantages over the first approach:

— It is lightweight: the untrusted algorithm is usually shorter than the corre-
sponding equivalence proof.

— Compilers often need to propagate type information further in the chain of
transformation; the typing derivation produced by 1 being explicit, it could
constitute the data structure being exploited.

— It inherits benefits from certifying approaches like proof-carrying code [2]:
certificates can be transmitted with the program, saving regeneration time
and avoiding to disclose the generation program.

... but there is more:

For the programmer As type systems become richer, it becomes increasingly
difficult for the programmer to write a well-typed program in one try, compile it
and run it: writing a program becomes a tight and non-linear interaction between
the human and the type-checker involving constant experiments, fixes, etc. If this
interaction is possible for short programs and fast checkers, it becomes increasingly
hindered by the latency of complete rechecks: even if the modifications made to
the program between two interactions are small, the whole program is usually
rechecked. This is especially true for languages embedding formal verification
aspects, like proof assistants: there, tight interaction with a type or proof checker
is unavoidable due to the difficulty of writing correct proofs without guidance
from the system, and the time taken by many tools to infer easy parts of the
proofs (proof search). The constant modification of the source makes it necessary
to observe incrementally the effect of a small change on the whole edifice: we



need to take advantage of the results of previous checks in order to build the
result for a modified version of the program.

Several generic methods have been devised for turning a batch program into
an incremental one [3-5]. Unfortunately, they suffer from their genericity on the
particular problem of type checking:

— First, they ignore the higher-order nature of program syntax, and the kind of
structural quotients we make on syntax trees with binders and environments
(a-equivalence, weakening. .. ): a hypothetical derivation of + z + 2 : nat
is still valid when put under a binder Ay. (x + 2) — y and should not be
regenerated.

— Since it is easy to track edits on a very large programs (trace of the editor),
we may want to feed the type checker only with a small delta on the previous
version and not the whole program, thus saving the time to recognize already
checked parts;

— Finally, there is no way to a posteriori validate the result of the incremental
process: the user has to trust not only the type-checking algorithm but also
its transformation into an incremental one, which increases the size of the
trusted base.

Now, if we consider as above a type-checker as a derivation-generating proce-
dure, and storing these derivations between calls to the procedure, we can reuse
already-built subderivations for subterms common to an old, checked version and
a new, to-be-checked version, and graft together these pieces of derivation to
form a new, large one for the new version of the program, saving the regeneration
of all equal subterms’ derivations in compatible contexts. This way we constantly
maintain the verifiable witness of well-typing for the program, and take advantage
of the quotients made on syntax with binders.

We can thus add to the list of advantages begun earlier that explicitly
generating typing derivations makes possible a form of safe incrementality by
sharing common subderivations.

In this paper, we present a framework to incrementally generate typing
certificates represented in the LF logical framework, and implemented as an ML
library. We specifically propose:

— a simple language for representing programs and proof deltas, derived from
contextual LF [6];

— a computational language to write untrusted derivation-generating type
checkers, based on a notion of function inverse to refer to already-computed
values;

— a generic algorithm to evaluate these type-checkers on program deltas and
verify on-the-fly the generated incremental certificates against a repository of
already constructed and checked derivations.



1 Using the framework

1.1 As a programmer

A student is learning about System T.. — a simply typed A-calculus with
natural numbers nat coming in two sets even and odd, introduction o and s(M),
elimination (rec(M, N,z y. P)), and subtyping on these types. He (or she) wants
to write a program computing (2+2) x 3 in that system. He knows that sometimes
the arguments of rec are quite hard to get correct, but T.. is a typed language;
he wants to take advantage of this to build his program incrementally using the
teacher’s provided incremental verifier. As a first attempt, he wants to verify
P, = rec(s(0),s(0),z y. s(z)): he sends the command 1 P; to the system. The
1 operator takes a well-formed program and tries to construct a valid typing
derivation for its argument in the current, empty context. The system succeeds
and returns a typing derivation D; of F P; : nat, valid in an empty context.
The student then decides to factorize a definition for add out of his code:

let add = Az : nat. Ay : nat. rec(z, y, uv. s(u)) in add (s(0)) (s(0)) .

But he (or his text editor) realizes that some parts of this program have not
changed: both s(o), and the function body s(u). He could reuse the pieces
of derivation just built. Let us call these respectively Ds, D3 and Dy. Dy is
hypothetical: it depends on the hypothesis H that F w : nat . Provided there is
an operator | D from the derivation to the program it types, what really needs
to be sent to the system is:

T(let add = Az : nat. Ay : nat. rec(z,y,uv. | Dy[H/tu]) in add | Dy | Ds) ,

that is, only the changed subterms of the program: this is a delta. Derivation Dy
used to live in the empty context, we are then free to use it in the new context
where F add : nat — nat, because System T enjoys the weakening property; Dy
depending on a derivation F z : nat, we instantiate this hole with the derivation
1w inferred recursively for the new recursive argument u. Dy derives b s(o) : odd,
but add awaits two nat arguments. When the system generates the derivation
for this application, it inserts a coercion odd < nat at these two points. Taking
advantage of Dy and D, the system succeeds with a new derivation made out of
these, without having to regenerate them.

Let us call D5 the subderivation generated for the definition of add, Dg for
the arguments | Dy | Dy and Dy for the application add | Dg. Even if it occurs
originally in the scope of add, Dg does not depend on the hypothesis H that
F add : nat — nat because of the strengthening property. Contrarily, D7 does:
each time we want to reuse it, we will have to provide a proof of this fact.

The student then provides a definition for multiplication, and writes the
operation (2 +2) x 3:

T(let add = | D5 in let mul = Az : nat. Ay : nat. rec(o,y, 2 t. add z 2) in
mul (L Dr[H /1 add]) (s(1D2))) -



Here again, he took care of reusing all derivations for equal subterms. In particular,
D+ expects a proof that the variable add is of type nat — nat; he provides 1 add
meaning: at this point we will have generated (or reused in this case) the derivation
of add, so we just have to use it here. Dy was deriving F s(o) : nat (with a coercion
since it was used as an argument to add); the system thus infers the more general
type nat for s(] Ds).

Discussion We choose here to represent deltas as usual terms with variables z, y
and special, meta-variables referring to already-computed results D;. Commands
sent to the system consists of terms, possibly containing special typed operators
having a computational content: 1 takes a term M and produces the (dependent)
pair of a type A and a derivation of the judgment - M : A in the current context;
J does the exact converse: it takes a derivation - M : A and projects it back as
the term M. The successful result of a command execution is a derivation where
each subderivation has been given a unique metavariable name for later reuse (a
repository). As subderivations can have free variables, we close them by a local
environment that must be instantiated by a substitution.

Although this small example may seem anecdotal, the interest of such a
mechanism becomes clear on very large programs: then the cost of rechecking
well-typing of a small modification amounts to recheck the path in the term from
the root to the changed part, and the changed part itself.

Seeing type-checking as issuing a completely explicit typing derivation enables
thus to think of the relationship between the input and the output. Feeding
subresults of the output D; back into the input P; is a well-known technique for
handling changes in the input: combined with a way to automatically recognize
already-computed input, it is memoization, a general-purpose technique for
incremental computation that has been extensively studied and combined with
other techniques [4, 3]. However, it is best understood in the case of purely first-
order data, and to our best knowledge remains mainly unexplored for higher-order
structures containing binders, like programs and proofs.

A memoized type-checker stores in a table bindings from its input (the
program) to its output (the derivation), and returns automatically the stored
output if the current input matches a binding in the table. It thus performs
two operations at once: output reuse and recognition of already-seen input.
Recognition — that is from a modified program, generate a delta from previous
versions — is in the higher-order case a complex task that we hope to address in
the future; we tackle here the verification of output reuse: given a delta, construct
a new derivation and verify it.

1.2 As a type system designer

Earlier, the teacher is preparing the tool for the students. He (or she) provides the
abstract syntax, the typing rules and the untrusted typing algorithm in order to
build the incremental type checker. How should he write the algorithm? We want
it to return a derivation, and take advantage of a higher-order representation



of the syntax, so it should not be necessary to thread any explicit environment.
The definition should then start with:

T IOIM:tm YA:tp. (FM: A) =

Function 1 takes a term M and produces the pair of an inferred type A and a
derivation that M has type A. Its code will be untyped, but the teacher provides
this type so that the checker can verify that each call is fed and returns values
of the right type: it is its contract so to say. He first decomposes term M and
treats the easy cases of o and s. The code continues with:

AM. case M of

| o — (even, ———)
F o:even

| s(M) — case TM of

D dd, — —
| {even, D) = odd, =4/

LA
s M : even

)

| (odd, D) — (even,

| (nat, D) — (nat, ——
Fs M :nat
We write (-, -) for the constructor of X-types. Patterns do not have to be exhaustive
since we are in an untrusted setting. For conciseness, we use case failure for
signaling typing error. There are three cases for s(M) in the system, corresponding
to the three rules in the declarative system. For the application case, we rely on
the well-known property that we may need to insert a coercion from the actual
type of the argument to its expected type:

| M N —
let <A1 — B7D1> = TM in let <A2,D2> ZTN in letDS = Al < A2 in
case D< of

| D Dy

"M N:B

D, De

D, FN:A,
FMN:B

~a<a P )

| -— (B, )

The let construct is just syntactic sugar for a one-branch case; we use an auxiliary
function

< : IHA:tp. IIB:tp. FAL<B=...

trying to construct a subtyping derivation for its argument, or failing with an
error. Notice the slight optimization to the size of the derivation: if the types Ay
and A, are the same syntactically, we do not generate a subtyping rule. This is
done by matching on the returned derivation D, in the case of the REFL rule.

Then comes the abstraction case Az : A. M. The difficulty is that the recursive
call T M must be done in an enlarged environment where - z : A. Otherwise the



check that the open derivation D returned by the recursive call is correct would
fail (x is unknown). We thus introduce a new construct case M in I' of ...
(case M of ... being syntactic sugar for case M in - of ...). Even then, we
would have no way of synthesizing a variable z’s type anymore (| z — 77?7). We
therefore substitute all occurrences of z with the output of function 1 on it (since
it is known at this point), i.e. a pair of A and D;. For this substitution to be
well-typed, we now need to coerce this output to a valid input (a term). We
introduce an operator which is in some sense the inverse of 1: operator | maps
a pair of a type and a derivation to the term it types.

| Az : A. M = let (B,D)inD,: (Fz:A) =1M[z/|(A,D,)] in

At this point, we get back B and D from the recursive call. We know that
B cannot depend on D, (because a System T.. type is always closed), but D
can: it is not per se a hypothetical derivation but an open derivation where a
special judgement named D, can occur. To return the complete derivation of
FAx:A M:A— B, wemust then close, or “hypothesize” D by D,,, and then
apply rule Lam:

[D-]
D

A— B
(A— " Xz. M:A— B

)

Concerning the treatment of environments, the case of rec(M, N,z y. P) is
similar: we first compute recursively the derivations Dj; and Dy which should be
well-typed in the current environment, and then Dp in the enlarged environment,
with variables z and y in P substituted with the (future) result of 1.

One problem remains with subtyping: terms N : Ay and P : Ap should be
coercible to the same type A, but P should be typed under  y : A, which is
not known before typing P. A trick to break the loop is to iterate the typing
of P with a more and more general type, until we reach a fixpoint. We reach a
fixpoint if there is a unique more general type, in our particular case of subtyping
relation, this means iterating only twice: we will then reach nat.

| rec(M,N,zy. P) —
let (Ay;,Dy) =1TM in letDy,, = Ay < nat in let (Ay,Dy) =1TN in
let (Ap,Dp)in (D, : (Fz :nat),Dy: (Fy: An)) =
tPlz/] (nat,D,), y/l (AN, Dy)] in
let <A, <DAN7DAP>> = AN Ap in
let (,Dp)in(D, : (Fz:nat),D,: (Fy:A4)) =
1t P[z/l(nat, D), y/l (A, Dy)]in

[Dz][Dy]
D Day Dn Day Dp Dap
FM:A FN:A FP:A

(4,

Frec(M,N,zy. P): A

Again, we use a new auxiliary function

M HA:tp. IIB:tp. XC :tp. (FAL<C)x (FB<C)=...



computing the sup of two types A and B, and returning proofs of subtyping.
Note that we could have performed the optimization seen in the application case
as well.

The type-checker is now done. There is no case for variables, as we will
not ever meet this case: we already substituted all variables with their result
derivation. Evaluation only needs to make sure that in this case, the derivation
will be returned, i.e. that equation 1 (A, D) = (A, D) holds.

Note that | can be derived automatically from the type of 1: we will call it
its inverse, since it maps the return type to the argument. It has definition:

b IOM:tm HA:tp. IID : (F M : A). tm = AM. MA. \D. M

where argument M is left implicit (it can be inferred).

Discussion We exploit an idea similar to run-time contracts [7]: there is no static
guarantee that computations will not return ill-typed values, but arguments and
results are checked at run-time at the boundaries of defined functions. This allows
to omit formal justifications, like the fact that we need to iterate twice the typing
of P in rec(M, N,z y. P), or that B cannot depend on D, in the A case, while
detecting errors early.

The idea of untrustedly generating certificates verified a posteriori is well-
known to LCF-style proof assistants: during manual proof search, the interaction
is driven by tactics: they are untrusted programs generating pieces of proofs,
assembled by other, higher-order tactics; verification of the generated proofs is
done when the evaluation of all tactics is complete. The differences with our
mechanism are two-fold: first, tactics usually take one (or several) goal(s) as
input, i.e. holes in a proof, whereas our functions can take any term; secondly,
proof-check is usually done at the end of the evaluation, which can lead to less
tractable bugs; by making evaluation and checking mutually recursive, we choose
to detect errors earlier in these witnesses: exactly at the point where they are
generated.

Introducing the “inverse” of the derivation inference function has two purposes:
as we saw in 1.1, it allows to refer to already-constructed derivations when writing
deltas. It also permits to abstract from the concrete environment when writing the
type-checker itself, that one must thread throughout the process in a traditional,
first-order type-checker. It is a generalization of the so-called context-free typing
presented in [8, chap. 4] where a special term construct {z : A} denoting free
variables is added to the syntax of terms, and rules

FMlz/{z: A} : B d
Far A M:ASB % F{r.A)-A

replace the usual ones. The difficulty with this technique, particularly in a
dependent setting, is to ensure that term {z : A} reduces to z so that they are
considered equal, i.e. we can strip off the annotations, while not forgetting them
too soon: otherwise we would hit the unhandled case 1 z. This requires evaluating
the program deltas with a carefully designed strategy (see 2.3).



K == Hx:A.K|>k Kind
A= 1IIz: A A ’ P Type family
P :x=asS Atomic type
M = dz. M | F Canonical object
F := H S| X[o] Atomic object
H =z | c ‘ f Head
S = - ‘ M S Spine
o = - ‘ o,x/M Parallel substitution
r .= . | I'z: A Environment

Fig. 1. Syntax of SLF

2 Design of the framework

2.1 The representation language

The emission of certificates by untrusted applications first raises the question of
the data structure to use for these certificates. The Edinburgh Logical Framework
[9], or LF for short, is one of the well-accepted solutions to this question. It is
a dependently typed lambda-calculus for representing higher-order terms and
derivations [10]. The user gives a signature defining abstract syntax and inference
rules of his object language, and gets an algorithm to verify terms and derivations
expressed in the LF syntax.

To write deltas by sharing subterms, we need to be able to refer to any
subterm. For this, we first extend LF with contextual metavariables (written X,
Y) standing for open terms, following [6]. Secondly, we make sure that every
subterm is named by a metavariable (an operation called slicing). We thus
introduce Sliced LF (SLF, see Fig. 1): it is an extension of spine canonical LF [11]
enriched with metavariables which are references to open terms as in [6].

In this variant, only n-long and S-normal objects have an existence. Canonicity
for S-reduction is enforced in the syntax and canonicity for n-expansion will be
enforced by typing, following [12]. Besides, application of a head (i.e. a variable,
constant, or function symbol) is n-ary (i.e. to a spine of objects) as opposed to
the more standard binary application: this eases the definition of substitution and
n-long forms, and corresponds to a focused sequent calculus known as LJT [13].
We differ the discussion of function symbols f to section 2.2. A wvalue is an object
containing no function symbols. The definition of hereditary substitution M[o]
is standard, and it is eluded here.

We distinguish syntactically between checkable and inferrable objects (resp.
canonical M and atomic F), as in e.g. [14]. Canonical objects are checked against
a given type, whereas we can synthesize the type of atomic objects; the coercion
from canonical to atomic objects triggers the equality check between synthesized
and checked types.



As is customary, we adopt the Barendregt convention for naming bound
variables, write A; — Ag for ITz : A;. Ay when z ¢ FV(A4y), X for X[,
and adopt indifferently list, map or set notations for o and I'. The identity
substitution id(I") is a notation for {z/z | z € dom(I")}. Metavariables X|[o]
stand for open objects with free variables in dom(o). To each use of them is
attached a substitution o defining these free variables. We write FMV (M) for
the set of metavariables in M and call an object M metaclosed if FMV(M) = (.

Definition 1. A repository R is a finite map from metavariable to triplets of
environments, atomic objects and atomic types (i.e. judgments of well-typing),
along with a distinguished metavariable, corresponding to the tip of the term it
contains:

R : (X—=(I'+F:P))xXo]

If R = (A, X[o]), we write R for the tip X|[o], and R(X[o]) for M[o] if
A(X) = (I' v M : A). The algorithm in 2.3 will maintain two invariants: a
repository R is acyclic, (for all X in R, the fixpoint of FMV(R(X)) does not
contain X) and all F and P in it are values.

Definition 2. We define the partial checkout operation co(R) (resp. cor (M),
cor(S)) from a repository (resp. object, spine) to a metaclosed object as unfolding
the definitions of all metavariables recursively:

co(R) = cor(R) cor (X[o]) = cor(R(X[o]))
cor(Ax. M) = Az. cor(M) cor(H S) = H (cor(9))
cor(M S) = cor(M) cor(S) cor() =-

Ezample 1. The repository ((X — - b lam Az. Y[u/T[w/z]] : tm,Y — u :
tm F lam Ay. Z[u/u,v/y] : tmZ — w:tmu:tm F appov u : tm, T —
z :tm F app z o : tm),X][]) checks out as the metaclosed atomic object
lam Az. lam Ay. app y (app z o).

2.2 The computation language

Secondly, we introduce the CL language to compute over our SLF objects (Fig. 2).
We can construct atomic objects out of others, and deconstruct them by case
analysis. The definition T of a function always begins with a series of A (as many
as there are arguments in its type).

This language is untyped, but types are dynamically checked: there is no
static guarantee that object f = produced by a function f : A; — As =T will
have type As, nor that pattern matching is exhaustive. It is also non-terminating;:
we can define a recursive function f : a — a = Az. f z. Nevertheless, we want to
maintain the invariant that each time an object goes in (resp. out) of a function
f Al — As, it is checked against the type of this function (Aj, resp. As). You
can think of interpreted functions as mere black boxes taking and producing
objects, and being able to feed objects to other black boxes; yet the wires linking



T 2= Xz. T | U Term
U = F’ case U in I" of C Atomic term
C == P%U’C’|PHU Branches
P:=Hz ...z Pattern

Fig. 2. Syntax of CL

them are labeled with types, and objects circulating in them are checked against
these types.

Besides constants, the signature defines interpreted functions f, g. Each
function comes with its type and its code.

Definition 3. A signature declares object and type constants and functions to
be used in objects.

X o= ~|E,a:K’E,C:A’E,f:A:T Signature
Definition 4. To each function f: A =T in X we associate a family of inverses
" (A" = mp(A) for n € N, where type (A)™ and term m,(A) are defined

recursively:

(HIZ Al. AQ)ThLl =1lz: Al. (Ag)n (HZL' Al. AQ)O =1lz: Al. (AQ)Al

(Hz: Ay. Ag)a =ITx: Ay. (Ag)a (P)a=IHz:P. A
Tnp1(ITz: Ay Ag) = Az, mp(A2) mo(ITz: Ay. As) = Ay. w¥(As2)
Y (Hz: Ay. Ag) = Az w7(A2) m(P) =1y

Functions (A)™ and 7, (A) use auxiliary functions (A)p and 7Y(A) to put the
n-th argument at the end of the type and term.

Ezample 2. — Function infer : (ITM : tm. sig M) =T (called T above, with
sig the LF encoding of the previous X-type) has one inverse infer? : (IIM :
tm. sig M — tm) = Az. A\y. = (called | above).

— Function equal : ITM :tm. IIN :tm. eq M N = T” has two inverses: equal’
and equal® of the same type ITM :tm. IIN : tm. eq M N — tm with code
respectively Am. An. Ah. m and Am. An. Ah. n.

2.3 The evaluation algorithm

The evaluation algorithm, called commit commitg (F) takes an atomic object
F (possibly containing function symbols to evaluate) and a repository R, and
produces a new repository R’ which is a strict extension of R with a different tip,
and which checks out to the value of F'. It has three roles, which are necessarily
interleaved:



— it evaluates M by reducing function symbols,

— it type-checks all values fed to and produced by functions w.r.t. R,

— it slices those values. This requires threading the map of R throughout
evaluation and typing.

We now turn to the bidirectional typed reduction and slicing algorithm
(Fig. 3, 4, 5), presented as an inference system. All judgments are of the form
ULV =W where U, V and L are inputs, are directed by the syntax of ¥ and
L, and W is the output. They are parameterized by a constant and implicit
signature X.

Label L is a mode influencing the strategy of evaluation of defined function
applications. They range over T, | and f, meaning respectively strong reduction,
pure checking with no reduction and call-by-name, head reduction. The purpose
of the f annotation is shown in rule FAPPEVALINV: it detects the special redex
form f (f° So) ... (f™ S,), reducing it to the last argument of the spines last(Sp),
provided all S; are equal. When n = 0, we recover the equality 1/ X = X.

The main judgment is atomic object typed reduction A; '+ F = A'; F/; P,
which reads: in repository A and environment I, applicative term F' is well-typed
of type P, and the slicing of its value produces a new repository A’. F’ is the
residual of this operation: only constant applications ¢ S are sliced, F’ is the
“tip” of F' that was not sliced.

These typing rules use typed definitional equality between families A; " +
Ay = Ag and spines A; I'; AF S; = Sy ¢ P. The formal definition of these judg-
ments is eluded here. It compares syntactically the respective values of its objects.
Since it potentially triggers function evaluation (and thus typing verification),
we carry the repository, the environment and the type of the compared objects.

To reduce the size of the stored environments and substitutions to their
minimum in slices I' - F': P, we use an auxiliary operation:

Definition 5. Strengthening takes an environment I' and an object F' well-typed
in I' to an environment I'" containing only the free variables of F': stren(I', F') =
{z:P|xeFV(F)NI(x)=P}.

It is correct to strengthen I" only w.r.t. F' before storing I’ as a slice because
of the following:

Lemma 1. If A;TFp F: A= A F/, then A;stren(IVF) b F: A= A F/

Definition 6. Let R = (A, X[o]). If A;I' F1 F = A’; X'[o']; P, then we define
the commit operation cig(F) = (4, X[o]). We say that R is well-constructed if
R = cir/(F) with either R' = (-, X[o]) or R well-constructed.

Lemma 2. If R well-constructed, then co(R) is defined and is a value.

We can already state a conservativity result stating that our algorithm accepts
exactly the well-typed values of LF:

Theorem 1. If F is a value, and R is well-constructed then cig(F) = R’ iff
I }_LF COR/(F) tA
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Fig. 3. Typed evaluation for objects (1)
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ATFpo: T = A0 ATy M2 Al = A" M 7 I
AT g (o,z/M) (T2 A = A" (0,2 /M) AT g o= Ay

Fig. 4. Typed evaluation for objects (2)

Rule FAPPEVAL calls the evaluation of a function, written as a CL term,
on a spine. The rules of Fig. 5 follow the call-by-name strategy, so that when
destructed by a case analysis an atom is only head-reduced. We finish by a
soundness result:

Theorem 2. If R well-constructed, and cig(F) succeeds with R', then co(R')
1s a closed value, well-typed w.r.t. LF.

3 Related work

Symbolic manipulation of proofs Several attempts to design a functional program-
ming language are being developed to compute over valid proof derivations [15-17].
Two essential design aspects of these tools are the choice of the representation
for proof trees and the choice of the meta-language to manipulate them. Like
them, we commit ourselves to Higher-Order Abstract Syntax (HOAS), and more
specifically to a language of the LF family. This recent work tackles the ambi-
tious challenge of deciding statically if a proof-generating function will always
produce valid proof terms. Unlike them, we follow a contract-based approach [7]
to guarantee the validity of the generated proofs. Thus, our technique is similar
to LF-based proof-carrying code [2, 18], and to the LCF architecture: an untrusted
proof generator is composed with a small, trusted proof checker. A noticeable
difference is the fact that, in our setting, the checking of proofs is interleaved
with their generation, allowing earlier adn easier bug catching during their devel-
opment. On one hand, these approaches are more satisfying and effective because
of the static guarantees. On the other hand, they are based on more sophisticated
type systems, which augments the trusted base, and put more constraints on
the way programs are written. When programming type checkers as well as in
other examples, we encounter the problem of linking a variable z to a typing
hypothesis F z : A to retrieve its type. In [15], a machinery of environment-side
X-types is proposed. We replace it by the use of inverse function which seems
more general, but puts more burden on the reduction strategy.



ATHFT*S = A F‘ Term evaluation
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Fig. 5. Evaluation of CL terms

Incremental computation Memoization is a widely used technique to reuse pre-
viously computed output [3]. The slicing of our values implements the same
idea: naming intermediate results of computation (derivations), and reuse of
these computation results by metavariables. Whereas memoization embeds the
recognition of a previously seen input, we delegate this to the user (or a front-end)
who is responsible for providing the delta: these deltas are more involved to infer
in the higher-order case, and may invoke reasons that are beyond the scope of a
basic memoized type-checker to justify the reuse of a specific typing derivation.
For instance, if term Az : A. M has been assigned the type A — B leading to
a typing derivation D, one can specialize its type to A’ — B by applying the
subtyping rule directly on D and providing a proof that A’ - B < A — B.

There is more to incrementality than just memoization. Adaptive functional
programming techniques [4, 5] includes memoization but also, thanks to depen-
dency tracking, allows to recompute the output only for changed parts without
even considering unchanged parts. We do have an explicit representation of
changes (the deltas), but they still must describe the path down to the changed
part.

Conclusion and future work

We have presented a lightweight framework to program incremental certifying
type-checker. A prototype implementation is available online® as well as examples
of type-checkers for several variants of the A-calculus. This prototype comes as an
OCaml library with a CamIP4 syntax extension, offering the commit and checkout

% http://www.cs.unibo.it/~puech/



operations on repositories, given an LF signature and OCaml implementations
for the defined functions.

This system is meant to serve as a kernel for checking deltas inferred by a

front-end whose development is still to be done. This piece of software will be
responsible for comparing several versions of the same source code to guess which
modifications have been applied to it.
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