
A Contextual Account of Staged Computations
Matthias Puech

Inria, France∗

matthias.puech@inria.fr

Abstract
Programming languages that allow us to manipulate code as data pose a notorious challenge
to type system designers. We propose contextual type theory with first-class environments as
a foundational typing discipline for multi-stage functional programming: it strictly subsumes
previous proposals while being based on a Curry-Howard correspondence with modal logic. In
particular, we show a conservative embedding of Taha and Nielsen’s environment classifiers into it.
This embedding sheds a new light on environment classifiers as approximations over environments,
and on the relationship between modal logics.

1 Introduction

For the working programmer like for the programming language theorist, there is a deep
duality between code and data that arises in many contexts: for instance, many algorithms
can be understood as code-generating programs (e.g., parser generators), and higher-order
programs can be understood as programs manipulated as data (e.g., defunctionalization).

Multi-staging is a feature of functional programming languages which gives the user the
illusion to manipulate code snippets. It provides a unifying abstraction to support partial
evaluation[10], macro-expansion [6] and more [15]. The main idea dates back to at least
Lisp’s quasi-quotations, and is threefold: (i) a special quote operator (written “‘”) turns an
expression into its syntactical representation—an S-expression; (ii) inside a quote, the unquote
operator (written “,”) allows us to escape the quotation and refer to another computed
expression whose value will be plugged at this place; and (iii) an evaluation primitive (“run”)
strips a piece of code from its quotes and evaluates it. For example in Lisp, the function:

(lambda (t) ‘(lambda (x) (,t (+ x y))))

returns an unevaluated S-expression with its argument t plugged in; applied to symbol
‘square, it returns:

‘(lambda (x) (square (+ x y)))

which can then be evaluated with the run primitive, provided that y is bound. Effectively,
multi-staging organizes the evaluation of expressions into user-specified stages, providing a
fine control over evaluation than the bare strategies. Multi-staging refers to the fact that
quotes (and thus unquotes) can be nested arbitrarily deeply: we can write code that will
evaluate to code that will in turn evaluate to, e.g., a function.

Type systems for multi-staging

One can express optimizations with multi-staging that would be much less direct without
it [10]. However, the added expressiveness makes it difficult to write correct programs: code
and values can be mixed up, variables can be captured or escape their scope, etc. Early on,

∗ This work was carried out while at McGill University, Dept. of Computer Science, Canada.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A Contextual Account of Staged Computations

type systems have been proposed to statically detect these potential bugs [10]. In particular,
Davies and Pfenning’s work on type systems for multi-staged languages was the first to be
logically grounded, i.e., based on a Curry-Howard correspondence with the modal logic S4
[5] and linear-time temporal logic [4], respectively. In both cases, the modality �A or ©A
denotes the type of a code snippet which, once evaluated, would lead to a value of type A;
quote and unquote respectively introduce and eliminate the modality.

The first system, λ� [5], is a λ-calculus with (anti-)quotations and an evaluation primitive,
but had the limitation that all quoted code snippets must be closed, i.e., must not contain
free variables like y in the example above. This made programming in λ� rather
cumbersome.
The second system, λ© [4], lifted this restriction while maintaining (a staged notion of)
lexical scoping, but lost the ability to guarantee safe evaluation of the code: evaluating
an expression containing free variables would give a run-time error.

Since then, much work attempted at reconciling these features, i.e., manipulate open code
while guaranteeing safe evaluation [16, 15, 2, 7, 13]. Notably, Taha and Nielsen’s λα [15],
which, using a seminal notion of “stage delimiters” called environment classifiers, provided
λ© with safe evaluation. Unfortunately, the logical correspondence was lost, and the
operational semantics made complex by a strong reduction discipline and a context-sensitive
grammar of values.

Contextual types for multi-staging

In this paper, we revisit the initial dilemma in the light of recent work on contextual types
[9, 11, 1]. These generalize the necessity modality �A into a contextual modality [Γ. A] which
denotes the type of expressions of type A whose free variables are taken from environment Γ.
We propose contextual type theory, augmented with first-class environments, as a foundation
for typing multi-stage functional programs; we interpret contextual types as the types of
code snippets. More specifically, we describe λctx , the contextual λ-calculus with first-class
environments, that allows the program to manipulate open code and nonetheless guarantees
safe evaluation. It has a simple operational semantics with a context-free grammar of values,
thanks to a notion of meta-substitution, and its type system is in direct Curry-Howard
correspondence with contextual logic. λctx is a core calculus but following Davies & Pfenning
we give an “implicit” variant, λctx

I , which follows more closely the programming practices.

I Example 1. In λctx
I , the Lisp code above would be written (in a pseudo-ML syntax):

let f t = [y. fun x → ~t (x+y)]

Brackets [] denote quoting, and ~ denotes unquoting. The open code fun x → ~t (x+y)
comes together with the environment in which it is meaningful, y; y is bound in the code.
Now, the fact that the argument t must be code representing a function, and that the result
has one more free variable of type int than the argument are all encoded in the type:

val f : [γ. int → α] → [γ, int. int → α]

Brackets denote code type, and γ is an environment variable which stands for any concrete
environment; it is implicitly bound at the top level, like type variable α. Given such an int,
say, 2, we can substitute (primitive subst) it for y and evaluate (primitive run) the ground
result safely on, say, 3. This expression evaluates to 25:

run (subst (f [. fun x → x * x]) [. 2]) 3

Matthias Puech 3

Embedding environment classifiers

Our calculus, while based on λ�, subsumes and refines λα: we give a new embedding of λα
into λctx

I , therefore providing a logical basis to environment classifiers; it is our main technical
contribution. At its core, this transformation infers missing environment information from a
λα typing derivation to obtain a family of implicit derivations in λctx

I . Notably, the translation
is presented declaratively, needs to translate whole typing derivations at once, and introduces
constrained logic variables to represent families of target derivations; showing the translation
correct therefore amounts to prove that it always returns a derivation family (with constrained
logic variables) that can be instantiated into a proper derivation, respecting the constraints.
Beyond mere expressiveness, this embedding also suggests a novel two-zone presentation
of temporal logic, thanks to the combination of contextual types and quantification over
environments.

Contributions

Our contributions are the following:
We define the syntax, typing and semantics of λctx , a core calculus able to express safe
staged computations (Sec. 2). We present its implicit counterpart, λctx

I , which is closer
to programming practices.
We present a type-preserving embedding from λα into λctx

I that infers missing environment
annotations and generates constraints. We sketch the proof that it preserves types up
to annotations, and that it is decidable, i.e., that constraints always have a solution
(Sec. 3.2). This is our main technical contribution.

2 Contextual types with first-class environments

One possible type system design starts with the necessity modality �A of the modal logic
S4, that is interpreted as the type of code snippets of type A [5]. The resulting type system,
λ�, has two distinct environments, ∆ and Γ, corresponding respectively to necessary and
true hypotheses, and two associated sets of variables, meta-variables u and usual variables
x (this presentation is called two-zone). The box construct [M] lets us build a piece of
code; it introduces the � modality. Inside M , the meta-variables of ∆ can be used, but
no free ordinary variable is allowed; this restriction corresponds to the principle that a
necessary proposition should only depend on necessary hypotheses. The let-box construct
let� u = M inN lets us name a piece of code M as meta-variable u inside N ; it is the
elimination form of the � type. The resulting λ-calculus accepts a safe evaluation primitive
run : �A → A, which corresponds to the reflexivity principle of S4. This language is
expressive enough to encode examples such as a staged regular expression matcher [5].

However, code of type �A is necessarily closed (no free ordinary variable allowed), which
makes programming in this language cumbersome. Contextual types [9] generalize this �
modality by allowing free variables in code, but explicitly keeping track of them in types: a
value of type [Γ. A] is a piece of code with free variables taken only from environment Γ. We
now write [Γ.M] for the introduction form, and since a piece of code might now be open,
we have to rebind its free variables each time we refer to one: meta-variable instances have
to carry a substitution u{σ} replacing each free variable of u by a term of the right type.
For instance, the function λf. let� u = f in [x, y. (u{x}) y] wraps a piece of code with one free
variable in an application node with a new free variable y (the returned code has two free

4 A Contextual Account of Staged Computations

variables); this function has type [p. q → r]→ [p, q. r]. The resulting programming language
was proposed to express staged programs more naturally [9].

Nevertheless, explicitly mentioning all free variables can hinder modularity. For instance,
the previous function takes code with exactly one free variable of type p, whereas any open
code with at least one variable of type p could be applied to it: the function could be
parametric in its environment. First-class environments [11] allow us to quantify over and
instantiate prefixes of environments: a value of type ∀α.A, introduced by the syntactic
construct Λα.M , is a value of type A where the environment variable α can be used in place
of any environment or environment prefix; such a variable can be replaced by any concrete
environment, thanks to the elimination form: M Γ. Now, a substitution σ can be either
concrete, or map all remaining variables to themselves, i.e., be the identity idα. For instance,
function Λα. λf. let� u = f in [α, y. u{idα, x} y] now has type ∀α. [α. q → r]→ [α, q. r].

2.1 The contextual λ-calculus λctx

Let us formally define this language, that we call λctx . Its syntax is defined by the grammar at
the top of Fig. 1. We introduce four disjoint sets of variables: base types p, q, r, environment
variables α, β, γ, usual variables x, y, z, f, g, h and meta-variables u, v, w. We prefer to
write minimum information in environments and substitutions, and to rely on positions to
match them: we write Γ̃ for an environment stripped of the variable names, and Γ̂ for an
environment stripped of the types. For instance, if Γ = (α, x : A, y : B) then Γ̃ = α,A,B and
Γ̂ = α, x, y. For the same reason, substitutions do not carry variable names; they are matched
positionally. Naturally, λx.M binds variable x in M , let� u = M inN binds meta-variable u
in N , Λα.M binds environment variable α in M ; also [Γ̂.M] binds all variables of Γ̂ in M .
Note that contexts (resp. substitutions) start with an environment variable (resp. identity
substitution), called its bottom variable, which can be instantiated to a concrete environment.
An environment context G is an environment with a hole [], standing for another environment.
We write G(Ψ) for the operation of plugging environment Ψ into the hole of G.

Its type system can be found on Fig. 1. The meta-environment ∆ in the typing judgment
contains only meta-variables, whose types start with a box [Γ̃. A]. The environment Γ contains
all usual variables. It has to have a bottom variable; we distinguish a special “top-level”
environment variable α0. The first three rules Var, Lam and App are standard. The Box
rule replaces the current environment Γ by Ψ, discarding all previously available (usual)
variables. LetBox promotes a value of box type into a meta-variable. When referring to
a meta-variable u :: [Ψ̃. A], one has to provide a substitution σ mediating between Ψ and
the current environment Γ (rule Meta). When generalizing over α, the Gen rule ensures
that α was not used, to avoid a variable clash. In the remainder, FV(X) denotes the set of
free variables of X (in the usual sense). The Inst rule uses the substitution of environment
variable to instantiate an environment variable to the given concrete environment:

I Definition 2 (Environment substitution). The substitution of an environment in a type
{Ψ/α}A, term {Ψ/α}M , substitution {Ψ/α}σ and environment {Ψ/α}Γ is defined as follows
(omitted cases are homomorphic):

{Ψ/α}(∀β.A) = ∀β. {Ψ/α}A β /∈ FV(Ψ) (1)
{Ψ/α}[Γ̃. A] = [{Ψ/α}Γ̃. {Ψ/α}A] (2)

{Ψ/α}(Γ, x : A) = {Ψ/α}Γ, x : {Ψ/α}A x /∈ FV(Ψ) (3)
{Ψ/α}β = β β 6= α (4)

Matthias Puech 5

A,B ::= p | A→ B | [Γ̃. A] | ∀α.A Type
Γ,Ψ ::= α | Γ, x : A Environment

M,N ::= x | λx.M |M N | [Γ̂.M] | let� u = M inN | u{σ} | Λα.M |M Γ Term
σ ::= idα | σ,M Substitution

∆,Θ ::= · | ∆, u :: [Γ̃. A] Meta-environment
G ::= [] | G, x : A Environment context

∆; Γ `M : A Term M has type A in environment Γ and meta-environment ∆

Var
x : A ∈ Γ

∆; Γ ` x : A

Lam
∆; Γ, x : A `M : B

∆; Γ ` λx.M : A→ B

App
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : A→ B

Box
∆; Ψ `M : A

∆; Γ ` [Ψ̂.M] : [Ψ. A]

LetBox
∆; Γ `M : [Ψ̃. A] ∆, u :: [Ψ̃. A]; Γ ` N : B

∆; Γ ` let� u = M inN : B

Meta
u :: [Ψ̃. A] ∈ ∆ ∆; Γ ` σ : Ψ̃

∆; Γ ` u{σ} : A

Gen
∆; Γ `M : A α /∈ FV(∆,Γ)

∆; Γ ` Λα.M : ∀α.A

Inst
∆; Γ `M : ∀α.A

∆; Γ `M Ψ : {Ψ/α}A

∆; Γ ` σ : Ψ̃ Substitution σ transports terms from environment Ψ to environment Γ

Id

∆;G(α) ` idα : α

Cons
∆; Γ ` σ : Ψ̃ ∆; Γ `M : A

∆; Γ ` (σ,M) : (Ψ̃, A)

Figure 1 Syntax and typing of λctx , the contextual λ-calculus

{Ψ/α}α = Ψ (5)

{Ψ/α}[Γ̂.M] = [{Ψ/α}Γ̂. {Ψ/α}M] FV(Ψ) 6⊂ FV(Γ) (6)
{Ψ/α}(Λβ.M) = Λβ. {Ψ/α}M β 6= α (7)

{Ψ/α}idβ = idβ β 6= α (8)
{Ψ/α}idα = id(Ψ) (9)

It is capture-avoiding, cf. the side condition in (1). More importantly, substituting an
environment for a variable in a term may change the binding structure of a term; for
instance, {β, x : p, y : q/α}[α, z.M] = [β, x, y, z. {β, x : p, y : q/α}M]. This fact explains the
side-conditions in (3) and (6). In (9), when substituting an environment for an identity
subsitution, we need to expand this identity substitution. This operation is defined as follows:

6 A Contextual Account of Staged Computations

V ::= λx.M | [Γ̂.M] | Λα. V Value

M ↓ V Term M evaluates to value V

Lam

λx.M ↓ λx.M

App
M ↓ λx.M ′ N ↓ V {V/x}M ′ ↓ V ′

M N ↓ V ′
Box

[Ψ̂.M] ↓ [Ψ̂.M]

LetBox
M ↓ [Ψ̂.M ′] {{Ψ̂.M ′/u}}N ↓ V

let� u = M inN ↓ V

Gen
M ↓ V

Λα.M ↓ Λα. V

Inst
M ↓ Λα. V

M Ψ ↓ {Ψ̂/α}V

Figure 2 Big-step operational semantics of λctx

I Definition 3 (Identity substitution expansion). id(Γ̂) is defined recursively on Γ̂:

id(α) = idα id(Γ̂, x) = id(Γ̂), x (10)

The Cons typing rule matches each component of a substitution with each component
of the environment, positionally. The Id rule features built-in weakening, expressed using
environment contexts substitution G(α): the identity substitution idα mediates between the
environment that is just the variable α, and any environment G(α) having α as bottom
variable; all other declarations in G are weakened.1

We illustrate the simplicity of λctx by describing its operational semantics on Fig. 2.
Values are described by the context-free grammar at the top. They include λ-abstractions,
generalizations and boxes. Note that any boxed term is a value; this reflects that we never
evaluate a piece of code (unless it is run). Values are a subset of terms; hereafter, we allow
to consider implicitly values as terms. The LetBox rule substitutes the definiens of u in the
body N , using the substitution of a meta-variable into a term {{Ψ̂.N/u}}M :

IDefinition 4 (Meta-substitution). The substitution of a meta-variable in a term {{Ψ̂.N/u}}M
and substitution {{Ψ̂.N/u}}σ is defined as follows (omitted cases are homomorphic):

{{Ψ̂.N/u}}(v{σ}) = v{{{Ψ̂.N/u}}σ} if u 6= v (11)

{{Ψ̂.N/u}}(u{σ}) = {{{Ψ̂.N/u}}σ}Ψ̂N (12)

When the meta-substitution arrives to its meta-variable u{σ}, it triggers a simultaneous
substitution {σ}Ψ̂N , defined as follows:

I Definition 5 (Simultaneous substitution). The simultaneous substitution of σ and Ψ̂ in a
term {σ}Ψ̂M and substitution {σ}Ψ̂σ′ is defined as follows (omitted cases are homomorphic):

{σ}Ψ̂(λx.M) = λx. {σ, x}Ψ̂,xM x /∈ FV(Ψ̂) ∪ FV(σ) (13)

{σ}Ψ̂[Γ̂.M] = [Γ̂.M] (14)
{σ}Ψ̂(u{σ′}) = u{{σ}Ψ̂σ

′} (15)

1 Instead of G(α), we could have written the more informal α, x1 : A1, . . . , xn : An; the notion of
environment context will be instrumental below, in Sec. 3.2.

Matthias Puech 7

{σ,M}Ψ̂,yx = {σ}Ψ̂x x 6= y (16)

{σ,M}Ψ̂,xx = M (17)

It is the standard definition, except for the facts that (i) because of our representation choice,
variable names and substituens are found in respectively Ψ̂ and σ and must be matched
positionally, as done in the last three equations, and (ii) it stops at the boundary of boxes
[Γ̂.M], since these do not contain any free variables except for those in Γ̂.

The first two evaluation rules are standard for the call-by-value weak head-reduction of the
λ-calculus. They rely on single substitution, which is easily defined in terms of simultaneous
substitution:

I Definition 6 (Single substitution). The substitution of a single usual variable in a term
{N/x}M is defined by {idα, N}α,xM .

Running code

Now, λctx can be extended with a run primitive of type (∀α. [α.A])→ A: if a piece of code is
well-typed in an environment that is universally quantified, then it cannot have free variables;
therefore it can safely be taken for its semantic value, i.e., stripped from its box. In other
words, run evaluates as follows:

M ↓ Λα. [α.N] N ↓ V
run M ↓ V

Since we have control over single free variables, we can also define a substitution primitive,
which replaces one free variable in a code value. This principle is definable:

subst : ∀α. [α,A.B]→ [α.A]→ [α.B] (18)
= Λα. λxy. let� u = x in

let� v = y inu{idα, v{idα}} (19)

I Example 7. Consider the following terms:
1. The two-level η-expansion [3] λf.Λα. let� u = f (α, x : p) [α, x. x] in [α. λx. u{idα, x}] has

type (∀α. [α. p]→ [α. q])→ ∀α. [α. p→ q]. The first arrow, at the current stage (outside
any box), gets turned into the last arrow, at the next stage (inside a box): this function
reifies the function space of its argument into the code of a function.

2. A code value representing a function, of type [α. p→ q], can be converted to a code value
with a free variable, of type [α, p. q]; the coercion Λα. λx. let� u = x in [α, y. u{idα} y] ap-
plies the free variable to the function. Conversely, we turn open code into a function by sub-
stituting its free variable by the function argument: Λα. λx. let� u = x in [α. λy. u{idα, y}].

3. Example 1 from the introduction is written in λctx :

T = Λα. λt. let� u = t in [α, y. λx. u{idα} (x+ y)]

It has type ∀α. [α. int → q]→ [α, int. int → q]. Applying, substituting and running it as
before reads:

run (substα0 (Tα0 [α0. square]) [α0. 2]) 3

which evaluates to 25.

Using the standard substitution properties of the three kinds of substitution, we can
prove that this language is type-safe:

I Theorem 8 (Type preservation). If M ↓ V then ·;α0 `M : A implies ·;α0 ` V : A.

8 A Contextual Account of Staged Computations

P,Q ::= x | λx. P | P Q | [Γ̂. P] | ∼P{τ} | Λα. P | P Γ Term
τ ::= idα | τ, P Substitution
Σ ::= · | Σ; Γ Environment Stack

Σ ` P : A Term P has type A in environment stack Σ

Var
x : A ∈ Γ

Σ; Γ ` x : A

Lam
Σ; Γ, x : A ` P : B

Σ; Γ ` λx. P : A→ B

App
Σ ` P : A→ B Σ ` Q : A

Σ ` P Q : A→ B

Box
Σ; Γ ` P : A

Σ ` [Γ̂. P] : [Γ̃. A]

Unbox
Σ ` P : [Ψ̃. A] Σ; Γ ` τ : Ψ̃

Σ; Γ ` ∼P{τ} : A

Gen
Σ ` P : A α /∈ FV(Σ)

Σ ` Λα. P : ∀α.A

Inst
Σ ` P : ∀α.A

Σ ` P Ψ : {Ψ̃/α}A

Σ ` τ : Ψ̃ Term P has type A in environment stack Σ

Id

Σ;G(α) ` idα : α

Cons
Σ ` τ : Ψ̃ Σ ` P : A

Σ ` (τ, P) : (Ψ̃, A)

Figure 3 Syntax and typing of λctx
I , the implicit contextual λ-calculus

2.2 The implicit contextual λ-calculus λctx
I

The examples above might seem more verbose than the discussion in the introduction. This
is due in part to the let-box construct, which forces values to be defined outside of the box
they are used in.2 The language λctx

I is an implicit version of λctx that inlines the definitions
of the let-box into a new unbox construct. The same idea was already proposed for λ� [5].

The syntax of λctx
I is shown on Fig. 3; it is identical to that of λctx , except for the

replacement of the two constructs let� u = M inN and u{σ} by a unique unbox ∼P{τ}.
Informally, we go from the former to the latter by the textually substituting ∼M for u in
N . Now, the stage of an expression is not determined by the number of boxes traversed
anymore, but by it minus the number of unboxes traversed. Therefore, it is necessary to
maintain a stack of environments during typing; the top of the stack contains variables of the
current stage, the deeper stack elements contain variables of earlier stages. The Box rule
pops an environment from this stage3, and the Unbox rule pushes one. In the latter, the
substitution τ mediates between the one in the eliminated box and the one pushed. There is
an embedding of λctx

I into λctx :

I Theorem 9 (Explicit translation). If Σ; Γ ` P : A then there is ∆,M such that ∆; Γ `M : A.

2 It is also due to its Church-style syntax, with explicit generalization, instantiation and substitution. A
practical language would use type inference.

3 Operationally, it is reconstructed from the two halves Γ̂ and Γ̃.

Matthias Puech 9

It is an easy generalization the existing proof for λ� [5], which involves lifting unboxes
out of the corresponding boxes as let-box. Note that nested unbox cause the introduc-
tion of let-box at different places, not necessarily at the closest enclosing box. For instance,
[α. f [β. g ∼(h ∼x{idα}){idβ}]] is translated to let� u = x in [α. f (let� v = h u{idα} in [β. g v{idβ}])]:
the innermost unbox produces the outermost let-box, because it belongs to stage 0; conversely,
the outermost unbox produces the innermost let-box because it belongs to stage 1.

3 Embedding environment classifiers

It is easy to see that λctx , being based on contextual types, subsumes Davies and Pfenning’s
λ� [5]: the type �A of closed code corresponds to the box type [α.A] (for an arbitrary
α). It is less immediate to see that it also subsumes λ© [4], in which code is allowed to be
open. This is what we show in this section, using a generalization of λ© allowing safe code
evaluation: Taha and Nielsen’s λα [15].

3.1 Environment classifiers

Another design direction of type system for staged computations is to start from a simpy-
typed λ-calculus and directly add in the quote and unquote constructs of, e.g., Lisp (we write
them respectively 〈E〉 and ∼E). Their typing should enforce binding-time correctness: a
computation should only depend on the result of computations in past or present stages.
Syntactically, it translates as the property of staged lexical scoping: a variable is in scope
only at the same stage as it was introduced.4 It can be enforced by indexing the typing
judgment with an integer n denoting the current stage; variable introduction saves n in
the environment, and variable lookup takes it into account. Now, quote 〈E〉 and unquote
∼E respectively increment and decrement this index, while introducing and eliminating the
type 〈A〉 of code. This system, called λ© by Davies [4], is logically grounded: the type
〈A〉 corresponds to the “next” modality ©A of linear-time temporal logic (LTL). However,
nothing guarantees code to be closed like in the previous section; adding a run primitive of
type ©A→ A could fail trying to evaluate a variable with no value. For instance, reducing
〈λx.∼(run 〈x〉)〉, would try to evaluate x. This fact led Taha and Nielsen [15] to devise λα,
that restricted evaluation by annotating expressions with the “boundaries” of each stage.

Syntactically (Fig. 4), they turned the integer index of λ© into a list X of identifiers,
called environment classifiers α, α1, α2 (let us reuse these names) and denoting the current
stage; each variable in the environment is now annotated with such a string. In rule Lam, the
current classifier string is recorded in the environment; rule Var applies only if the current
classifier string matches the one in the environment. Type 〈T 〉α denotes the type of code
at a stage α; it is introduced by quote 〈E〉α and eliminated by unquote ∼E: Quote and
Unquote respectively push and pop the classifier α off the classifier string X. The construct
Λα.E (let us reuse this notation) sets the boundary for stage α: it guarantees that α has
not been used in a super-expression of E; the second premise of Gen ensures this. Λα.E
introduces the type ∀α.A, which is eliminated by its dual E α (again, overloading notations
from previous section)This way, a value of type ∀α. 〈T 〉α is necessarily a closed piece of code,
that can be safely evaluated. For instance, expression 〈λx.∼(Λα. 〈x〉α)〉α is justly rejected.

4 It could be in scope in previous stages, a feature known as cross-stage persistence that we defer to
future work.

10 A Contextual Account of Staged Computations

T,U ::= p | T → U | 〈T 〉α | ∀α. T Type
E,F ::= x | λx.E | E F | 〈E〉α | ∼E | Λα.E | E α Term

Ξ ::= · | Ξ, x :X T Environment
X,Y ::= · | Xα Classifier string

Ξ `X E : T Term E has type to T in X environment Ξ at stage X

Var
(x :X T) ∈ Ξ
Ξ `X x : T

Lam
Ξ, x :X T `X E : U
Ξ `X λx.E : T → U

App
Ξ `X E : T → U Ξ `X F : T

Ξ `X E F : T → U

Quote
Ξ `Xα E : T

Ξ `X 〈E〉α : 〈T 〉α

Unquote
Ξ `X E : 〈T 〉α

Ξ `Xα ∼E : T

Gen
Ξ `X E : T α /∈ FV(Ξ, X)

Ξ `X Λα.E : ∀α. T

Inst
Ξ `X E : ∀α. T
Ξ `X E α : T

Figure 4 Syntax and typing of λα, also known as Environment classifiers

The operational semantics of λα can be found in Taha and Nielsen [15]. Most notably,
the syntax of values cannot be captured by context-free grammar: they are indexed by n, the
stage to which it belongs. There are two evaluation rule for each syntactic constructs: one
for the case where n = 0, i.e., we should evaluate the expression, and one for the case where
n > 0, i.e. the expression is code, and therefore not evaluated. As for λctx , λα can safely be
extended with a run primitive, of type (∀α. 〈T 〉α) → ∀α. T , for the reasons evoked above.
The addition of environment classifiers and quantification has no logical counterpart in LTL.

3.2 Going contextual: from λα to λctx
I

We now turn to our main technical result: the translation from λα to λctx
I , which turns

quotes into boxes. This involves inferring some environment information missing from λα.
For instance, the term:

Λα. λf. 〈λx.∼(f 〈x〉α)〉α : ∀α. (〈p〉α → 〈q〉α)→ 〈p→ q〉α

can be translated to:

Λα. λf. [α. λx.∼(f [α, x. x]){idα, x}] : ∀α. ([α, p. p]→ [α, p. q])→ [α. p→ q]

which contains more information (look at the environments in boxes, both in terms and in
types). In other words, we need to annotate terms with the environment in which they are
well-typed, and convey this information. Our translation has three noteworthy characteristics:

first, it does not strictly preserve types, since λα and λctx
I have different grammars of

types. They are however translated in a “reasonable” way (preserving their structure).
secondly, missing information in λα is retrieved from typing; consequently, the translation
takes a source typing derivation and produces a target typing derivation.
lastly, it is not unique: a well-typed λα term corresponds potentially to a family of λctx

I

term and types; we choose to express these families with schemas of term and types, i.e.,
the output will contain “logic” variables, standing for environment contexts, together
with constraints on their values.

Matthias Puech 11

Translation definition

We first introduce an infinite set of logic variables g1, g2, . . . standing for environment
contexts G (as in Fig. 1). The syntax of λctx

I of Fig. 3 is extended with the new construct:

Γ ::= . . . | g(Γ)

A logic variable g comes with an “prefix” environment Γ that will be substituted for the
hole of the environment context G it stands for. Note that no typing rule is associated to this
new construct; we will only consider well-typed environments containing no logic variables.

I Definition 10 (Valuation). A valuation ρ maps logic variables to environment contexts:

ρ ::= · | ρ, g 7→ G

Concatenation of valuations ρ1 @ ρ2 is defined only if dom(ρ1) ∩ dom(ρ2) = ∅.

I Definition 11 (Instantiation). Let ρ be a valuation and Γ an environment (resp. A a
type, P a term, Σ a stack). We define the instantiation Γρ (resp. Aρ, Pρ, Σρ) as the
substitution of all logic variables in Γ (resp. A, P , Σ) by their value in ρ: (omitted cases are
homomorphic)

αρ = α (g(Γ))ρ = g(Γρ) if (g 7→ G) /∈ ρ (20)
(g(Γ))ρ = G(Γρ) if (g 7→ G) ∈ ρ (21)

This definition is extended homomorphically to propositions and to typing judgments.

Note that in eq. (21), the substitution of an environment context variable g(Γ1) by its value
involves substituting its hole with the associated environment value Γρ.

In the following, we suppose that an implicit set of used logic variables is maintained (a
gensym). A logic variable is fresh if it is not contained in this set; each fresh variable used in
an expression is added to this set. Now, the following function relates types in λα and λctx

I :

I Definition 12 (Type translation). We define the function JT K = A as follows:

JpK = p JT → UK = JT K→ JUK

J∀α. T K = ∀α. JT K J〈T 〉αK = [g(α). JT K] g fresh

Quotes are translated to boxes; the environment attached is left unspecified, except for the
fact that it must have bottom variable α; for this purpose, we introduce the fresh logic
variable g. In other words, this function J·K, maps a λα type to a family of λctx

I types indexed
by a set of environment contexts. The following helper function relates a λα environment Ξ
to a λctx

I environment Ψ at a certain stage X:

I Definition 13 (Environment restriction). We define function Ξ|αX = Ψ by induction on Ξ:

(Ξ, x :X T)|αX = Ξ|αX , x : JT K (Ξ, x :Y T)|αX = Ξ|αX if X 6= Y (·)|αX = α (22)

The result environment Ψ contains only the declarations of Ξ declared at stage X, associated
with their translated type. Variable α will be put at the bottom of the resulting environment.

We now translate λα environments into equivalent λctx
I environment stacks, restricted to

a classifier string. We reshuffle its declarations from a style where all declarations carry their
classifier string, to a style where they are grouped in stack cells according to their stages.

12 A Contextual Account of Staged Computations

Var
JΞKX = Σ; Γ x : A ∈ Γ

JΞ `X x : T K = Σ; Γ ` x : A / >

Lam
JΞ, x :X T `X E : UK = Σ; Γ, x : A ` P : B / C

JΞ `X λx.E : T → UK = Σ; Γ ` λx. P : A→ B / C

App
JΞ `X E : T → UK = Σ ` P : A→ B / C JΞ `X F : T K = Σ′ ` Q : A′ / C ′

JΞ `X E F : UK = Σ ` P Q : B / C ∧ C ′ ∧A = A′ ∧ Σ = Σ′

Box
JΞ `Xα E : T K = Σ; Γ ` P : A / C

JΞ `X 〈E〉α : 〈T 〉αK = Σ ` [Γ̂. P] : [Γ̃. A] / C

Unbox
JΞ `X E : 〈T 〉αK = Σ ` P : [G̃(α). A] / C Ξ|αXα = Γ

JΞ `Xα ∼E : T K = Σ; Γ ` ∼P{id(Γ̂)} : A / C ∧G(α) = Γ

Gen
JΞ `X E : T K = Σ ` P : A / C

JΞ `X Λα.E : ∀α. T K = Σ ` Λα. P : ∀α.A / ∀α.C

Inst
JΞ `X E : ∀α. T K = Σ ` P : ∀α.A / C g fresh
JΞ `X E α : T K = Σ ` P g(α) : {g(α)/α}A / C

Figure 5 Translation of typing derivations from λα to λctx
I

I Definition 14 (Environment translation). JΞKX = Σ; Γ is defined by induction on X:

JΞK· = Ξ|α0
· JΞKXα = JΞKX ; Ξ|αXα (23)

Translating Ξ at classifier string X results in a stack Σ of |X| environments. In the first
equation, α0 (the top-level environment variable) corresponds to the empty classifier string.
In the second, we concatenate all declarations at a stage, putting its name α at the bottom.

I Example 15. Jf :· 〈p → q〉α, x :α p, y :α q, z :αβγ pKαβ = α0, f : [g1(α). p → q];α, x : p, y : q;β.

We can now define the translation as a relation between derivations:

I Definition 16 (Derivation translation). The judgment JΞ `X E : T K = Σ ` P : A / C is
defined by the rules of Fig. 5. It reads: the λα derivation Ξ `X E : T is translated to a λctx

I

derivation Σ ` P : A that possibly contains logic variables which must satisfy constraints C.
Constraints are clauses in first-order predicate logic with equality.

The rules closely follow the typing rules of the two languages, projecting each λα construct
to its λctx

I equivalent, and (un-)quote to (un-)box. The need for a translation on typing
derivations, and not only on terms and types, is witnessed by Box rule: the residual
term [Γ̂. P] and its type contain Γ, that is reconstructed through typing. At the leaves

Matthias Puech 13

(rule Var), we translate the environment using Definition 14, potentially introducing logic
variables in types. Rule Inst also introduces a logic variable g. Throughout the translation,
constraints C are accumulated; they force the ultimate instantiation of logic variables. Var
generates the vacuously true constraint. As for ML type inference, rule App constrains the
argument’s type A′ and the function’s domain A to be equal, as well as both premisses’
environments. The Unbox rule inspects its subderivation’s target type, which must be a
box in an environment context G; we constrain this target environment to be the restriction
of the source environment at the current stage. Finally, in the constraints generated above a
Gen rule, variable α can be free; thus, we enclose it with a universal quantifier.

I Example 17. The following judgment is derivable:

J`· λf.Λα. 〈λx.∼(f α 〈x〉α)〉α : (∀α. 〈p〉α → 〈q〉α)→ ∀α. 〈p→ q〉αK =
α0 ` λf.Λα. [α. λx.∼(f (g3(α)) [α, x. x]){idα, x}] :

(∀α. [g1(α). p]→ [g2(α). q])→ ∀α. [α. p→ q] /
(g1(g3(α)) = α, x : p) ∧ (g2(g3(α)) = α, x : p)

These constraints accept several solutions, among which:
g1 = g2 = [], g3 = [], x : p, which instantiates the residual terms and types to:

λf.Λα. [α. λx.∼(f (α, x : p) [α, x. x]){idα, x}] : (∀α. [α. p]→ [α. q])→ ∀α. [α. p→ q]

g3 = [], g1 = g2 = [], x : p, which gives the less general, alternative translation:

λf.Λα. [α. λx.∼(f α [α, x. x]){idα, x}] : (∀α. [α, p. p]→ [α, p. q])→ ∀α. [α. p→ q]

Translation correctness

The main results are stated below. First, we can prove that the translation produces
only correct derivations, provided that we instantiate the logic variables according to the
constraints:

I Theorem 18 (Type soundness). If JΞ `X E : T K = Σ ` P : A / C and Cρ holds for some
instantiation ρ, then (Σ ` P : A)ρ.

The above statement would vacuously hold for a bogus translation mapping, e.g., all
terms to a trivial derivation. It is not the case: the types and environments are translated
according to Definitions 12 and 14, i.e., they only differ by the annotations on boxes.

I Theorem 19 (Correctness). If Ξ `X E : T and JΞ `X E : T K = Σ ` P : A / C then there
exists ρ such that JT Kρ = A and JΞKXρ = Σ.

Finally, we can prove that these rules can be read as an algorithm, taking as input
the source judgment and returning the target judgment and the constraints (the proof is
constructive, which amounts to a decidability result). Simultaneously, we can show that the
emitted constraints can always be solved:

I Theorem 20 (Decidability). If Ξ `X E : T then there exists Γ, P , A, C and ρ such that
JΞ `X E : T K = Γ ` P : A / C and Cρ holds.

14 A Contextual Account of Staged Computations

4 Related Work

According to Tim Sheard’s taxonomy of meta-programming [14], the system we study is
a homogeneous, multi-stage, statically typed, manual, run-time program generator using
a quasi-quote representation. Most general-purpose programming languages feature some
meta-programming facility: pre-processors, constant- or macro-definitions, template systems,
staging etc. They serve two main purposes: performance (partial evaluation, compile-time op-
timization), and practical expressiveness (user-defined syntactic constructs). “Hygienic” (i.e.,
with lexical scoping) and well-typed macro-definitions systems have been studied extensively
[6]. The present work stems from Davies and Pfenning’s Curry-Howard correspondences
between such type systems and two modal logics [4, 5]. We aimed at reconciling their two
orthogonal systems, λ� and λ©, while retaining the clear logical correspondence.

Environment classifiers and the λα language [15] had a certain impact in making evaluation
possible in a λ©-like language. It was implemented as MetaML [16], then MetaOCaml and
BER MetaOCaml [8]. Our language λctx is strictly more expressive, thanks to its control
over single free variables; we conjecture that it makes simpler to define macros which bind
variables (in MacroML [6], binding notations are interpreted as functions). Tsukada and
Igarashi studied the logical foundation of environment classifiers [17]; we refined their analysis,
showing that they range over environments in a contextual logic.

The λopen family of languages [7] are typed multi-staged ML-like derived from λ� and
featuring mutable state, cross-stage persistence, and two substitutions: one capture-avoiding
and one intentionally not. It has a type of open code �(Γ . A) interestingly similar to ours,
and a notion of environment polymorphism; the authors, however, treat Γ as a row variable
and use record subtyping for type inference. Its operational semantics is also more complex:
it needs a gensym and non context-free values; the logical foundation is also not discussed.
For comparison, it would be interesting to reformulate λopen as an explicit, two-zone system.
We also plan to investigate the logical interpretation of cross-stage presistence.

Recently, Rhiger proposed a type system for a multi-staged λ-calculus with (anti-)quotations
featuring safe evaluation, open code manipulation and mutable state [13]. Interestingly,
it also shares syntactic features with our language λctx

I : a “contextual” type of code [γ]t
parametrized over an environment γ, and environment stacks in the typing judgment. It is
however very different in essence: future-stage environments are kept when unquoting and
not discarded as in λctx

I , directly allowing open code. In this sense, it is closer to λ©, but
with a tracking of free variables which makes it less expressive: for instance, the two-level
η-expansion is not well-typed in this system.

Contextual modal type theory [9] was designed to provide a principled foundation to
the manipulation of open terms, as performed in proof and programming languages. From
this work emerged Beluga, [12], a programming and reasoning language which allows to
manipulate expressions with binders typed in the LF logical framework. Contrarily to this
work, it uses only two, heterogeneous levels; it also features pattern-matching on data, and
has a dependent type discipline. Pattern-matching on code could be added to our proposal,
and would be novel and useful to design, e.g., program transformers or optimizers.

5 Conclusion

We have shown that a logically principled core λ-calculus, that we called λctx , suffices to
express safe multi-staged computations. Its instrumental features are contextual types and
first-class environments. Contrarily to previous work [15, 13], it has a two-zone type system
(validity and truth), a simple operational semantics with a context-free grammar of values,

Matthias Puech 15

and provides a fine-grained control over free variables, on a per-variable basis. In particular,
it subsumes Taha and Nielsen’s λα: we have shown a novel, type-preserving embedding from
it, that infers missing information. Beyond expressiveness, we have shown that environment
classifiers range over concrete environment contexts, giving a logical foundation to λα. As a
consequence, we have also exhibited a new relationship between S4’s necessity and LTL’s
“next” modalities: there is a necessity-based presentation of LTL, provided that we have
quantification over environments.

Acknowledgments

The author would like to thank Brigitte Pientka for impulsing and guiding this work, and
Beniamino Accatoli for the script-doctoring.

References
1 Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-types. In

John Field and Michael Hicks, editors, POPL 2012, pages 413–424. ACM, 2012.
2 Chiyan Chen and Hongwei Xi. Meta-programming through typeful code representation.

JFP, 15(5):797–835, 2005.
3 Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion does the trick. ACM

Trans. Program. Lang. Syst., 18(6):730–751, 1996.
4 Rowan Davies. A temporal-logic approach to binding-time analysis. In LICS 1996, pages

184–195, 1996.
5 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. J. ACM,

48(3):555–604, 2001.
6 Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage computations: Type-

safe, generative, binding macros in MacroML. In ICFP 2001, pages 74–85, 2001.
7 Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic modal type system

for lisp-like multi-staged languages. In POPL 2006, pages 257–268, 2006.
8 Oleg Kiselyov. The design and implementation of BER MetaOCaml - system description.

In FLOPS 2014, pages 86–102, 2014.
9 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.

ACM Trans. Comput. Log., 9(3), 2008.
10 Flemming Nielson and Hanne Riis Nielson. Two-level Functional Languages. Cambridge

University Press, New York, NY, USA, 1992.
11 Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract

syntax and first-class substitutions. In POPL 2008, pages 371–382, 2008.
12 Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and reasoning

with deductive systems (system description). In IJCAR 2010, pages 15–21, 2010.
13 Morten Rhiger. Staged computation with staged lexical scope. In ESOP 2012, pages

559–578, 2012.
14 Tim Sheard. A taxonomy of meta-programming systems, 2015. Accessed: 2015-02-15.
15 Walid Taha and Michael Florentin Nielsen. Environment classifiers. In POPL 2003, pages

26–37, 2003.
16 Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annota-

tions. Theor. Comput. Sci., 248(1-2):211–242, 2000.
17 Takeshi Tsukada and Atsushi Igarashi. A logical foundation for environment classifiers.

Logical Methods in Computer Science, 6(4), 2010.

	Introduction
	Contextual types with first-class environments
	The contextual -calculus ctx
	The implicit contextual -calculus ctxI

	Embedding environment classifiers
	Environment classifiers
	Going contextual: from to ctxI

	Related Work
	Conclusion

