Engineering CPS transformations

Matthias Puech

Complogic seminar, McGill University
August 8, 2014

1/19

Purpose of this talk

e Introduce you to CPS transformations

e Give you my understanding of classic results
(reinvent them from a different angle)

e Gather comments about an upcoming draft

2/19

Purpose of this talk

e Introduce you to CPS transformations

e Give you my understanding of classic results
(reinvent them from a different angle)

e Gather comments about an upcoming draft

The medium
Build incrementally an optimized CPS
“one-pass, 3-normal, properly tail-recursive”

The message

Tools to engineer transformations based on:
e tight (typed) syntax
e optimization analysis

Continuation-passing styles

A CPS transformation is

e a semantic artifact
(~ operational/denotational /process/. . . semantics)

e an intermediate language in compilers
(complex language — simpler language)

e a proof transformation
(classical — intuitionistic)

e a programming technique

3/19

Continuation-passing styles

A CPS transformation is

e a semantic artifact
(~ operational/denotational /process/. . . semantics)

e an intermediate language in compilers
(complex language — simpler language)

e a proof transformation
(classical — intuitionistic)

e a programming technique

Many variants, long, long history

e here: call-by-value
(exercise: call-by-name)

3/19

Example: CPS for compiler construction

1974

Theoretical Computer Science 1 (1975) 125-159. © Nort-Holland Publishing Compzny

CALL-BY-NAME, CALL-BY-VALUE AND THE
A~CALCULUS
G. D. PLOTKIN

Department of Mazhine Intelligence, School of Artificial Intelli University of Edinburgh
Edinburgh, United Kingdom

Communicated by R. Milner
Received 1 August 1974

Abltl‘lc!. This papsr e<amines the old question of the relationship between ISWIM and the

Iculus, usicg the between call-by-value and call-by-name. It is held that the re-
lamm.shlp shonld be mediated by a -undardumon theoreni, 3ince this lcads to difficultics,
a new A-cal is d whose theorem gives a goed correspondence
with ISWIM a: given by the SECD machine, but without the letrec feature. Next a call-by-name
variant of ISWIM is introduced which i3 in an analogous correspondence with the vsual A-calculus.
‘The relation beiween call-by-value and call-by-name is then studied by giving simulations cf each
lauguage by the other and mlerpretanons of each calculus in the other. These are obtained as

another ication of the conti i Some is is placed t on the
notion of opesational equality (or contextual equality). If terms can be proved equal in a calculus
they are operationally equal in the ding | Unf:; 1y, o it 2quality

is not preserved by either of the simulztions.

4/19

Example: CPS for compiler construction

Compiling with
Continuations

Andrew W. Appel

1992

4/19

Example: CPS for compiler construction

1993

The Essence of Compiling with Continuations

Cormac Flanagan® Amr Sabry*

Bruce F. Duba Matthias Felleisen®

Department of Computer Science
Rice University
Houston, TX 77251-1892

Abstract

In order to simplify the compilation process, many com-
pilers for higher-order languages use the continuation-
passing style (CPS) transformation in a first phase to
generate an intermediate representation of the source
program. The salient aspect of this intermediate form
is that all procedures take an argument that represents
the rest of the computation (the “continuation”). Since
the naive CPS transformation considerably increases
the size of programs, CPS compilers perform reductions
to produce a more compact intermediate representation.
Although often implemented as a part of the CPS trans-
formation, this step is conceptually a second phase. Fi-
nally, code generators for typical CPS compilers treat
continuations specially in order to optimize the inter-
pretation of continuation parameters.

A thorough analysis of the abstract machine for CPS
terms shows that the actions of the code generator in-
verl the naive CPS translation step. Put differently,
the combined effect of the three phases is equivalent

the d-value rule is an operational semantics for the
source language, that the conventional full A-caleulus
is a semantics for the intermediate language, and, most
importantly, that the A-caleulus proves more equations
between CPS terms than the A,-calculus does between
corresponding terms of the source language. Translated
into practice, a compiler can perform more transform a-
tions on the intermediate language than on the source
language [2:4-5]. Second, the language of CPS ferms is
basically a stylized assembly language, for which it is
casy to generate actual assembly programs for different
machines [2, 13, 20]. In short, the CPS transformation
provides an organizational principle that simplifies the
construction of compilers.

To gain a better understanding of the role that the
CPS transformation plays in the compilation process,
we recently studied the precise connection hetween the
A,-calculus for source terms and the A-calculus for CPS
terms. The result of this rescarch [17] was an extended
A, -calculus that precisely corresponds to the A-calcu-
lus of the intermediate CPS language and that is still

4/19

Example: CPS for compiler construction

Compiling with Continuations, Continued

Andrew Kennedy
Microsoft Research Cambridge

akenn@microsoft.com

Abstract

We present a series of CPS-based intermediate languages suitable
for functional language compilation, arguing that they have practi-
cal bcm,hta over direct-style languages based on A-normal form
. Inlining of functions demonstrates the bene-

n ANF-based languages, inlining involves a re-
normalization step that rearranges let expressions and possibly in-
troduces a new ‘join point’ function, and in monadic languages,
commuting conversions must be applied; in contrast, inlining in our
CPS languag is a simple substitution of varizbles for varisbles.

using so-called *double-barrelled’ CPS. Sublyping on exception
constructors then gives a very straightforward effeet analysis for ex-
ceptions. We also show how a graph-based representation of CPS
terms can be implemented extremely cfficiently, with lincar-time
term simplification.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages): Processors — Compilers

2007

so monads were a natural choice for separating computations from
values in both terms and types. But, given the history of CPS, prob-
ably there was also a feeling that “CPS is for call/cc”, something
that is not a feature of Standard ML.

Recently, the author has re-implemented all stages of the
SML.NET compiler pipeline to use a CPS-based intermediate lan-
guage. Such a change was not undertaken lightly, amounting to
roughly 25,000 lines of replaced or new code. There are many
benefits: the language is smaller and more uniform, simplifica-
tion of terms is more straightforward and extremely cfficient, and
advanced optimizations such as contification are more easily ex-
pressed. We use CPS only bu.auu it is a good piace to do opti-
mization; we are not interested in class control in the source
language (callicc), or as a means of implementing other features
such as concurrency. Indeed, as SML.NET targets NET IL, a call-
stack-based intermediate language with support for structured ex-
ception handling, the compilation process can be summarized as
“transform direct style (SML) into CPS; optimize CPS; transform
CPS back to direct style (NET IL)"™.

4/19

Outline

A

Fischer & Plotkin’s original CPS transformation
One-pass CPS (through Control-Flow Analysis)

The syntax of CPS terms (through syntax aggregation)
Proper transformation of f3-redexes

Proper transformation of tail calls

Fischer & Plotkin’s original transformation

M:=2x.M|MM|x|letx=MinM € Exp

6/19

Fischer & Plotkin’s original transformation

M:=2x.M|MM|x|letx=MinM € Exp
1T :M->M
[x] =Ak.kx

[Ax.M] = Ak.k (Ax. [M])
[M NJ = Ak. [M] (Am.[[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax.[[N] k)

6/19

Fischer & Plotkin’s original transformation

M:=2x.M|MM|x|letx=MinM € Exp
1T :M->M
[x] =Ak.kx

[Ax.M] = Ak.k (Ax. [M])
[M NJ = Ak. [M] (Am.[[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax.[[N] k)

Properties

Simulation [eval,(M)] =~ eval,([M] (Ax.x))
Indifference eval,([M](Ax.x)) =~ eval,,([M] (Ax.x))

6/19

Problem “administrative redexes”

[x] =Ak.kx
[Ax.M] = Ak.k (Ax. [M])
[IMN] = Ak. [M] (Am.[[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax. [N] k)

Examples

o [Ax.x] = Ak.k (Axk.kx)

7/19

Problem “administrative redexes”

[x] =Ak.kx
[Ax.M] = Ak.k (Ax. [M])
[IMN] = Ak. [M] (Am.[[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax. [N] k)

Examples

o [Ax.x] = Ak.k (Axk.kx)

o [(Ax.)(Ax.x)] =
k. (M. k (Axk. kx)) (Am. (Ak. k (Axk.kx)) (An.m n k)

7/19

Problem “administrative redexes”

[x] =Ak.kx
[Ax.M] = Ak.k (Ax. [M])
[IMN] = Ak. [M] (Am.[[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax. [N] k)

Examples

o [Ax.x] = Ak.k (Axk.kx)

o [(Ax.)(Ax.x)] =
k. (M. k (Axk. kx)) (Am. (Ak. k (Axk.kx)) (An.m n k)

Proposition
Translate, then reduce administrative redexes (two passes).

7/19

Problem “administrative redexes”

[x] =Ak.kx
[Ax.M] = Ak.k (Ax. [M])
[IMN] = Ak. [M] (Am.[[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax. [N] k)

Examples

o [Ax.x] = Ak.k (Axk.kx)
o [(Ax.x)(Ax.x)] =
k. (Ak.k (Axk.kx)) (Am. (Ak.k (Axk.kx)) (An.m n k)
Proposition
Translate, then reduce administrative redexes (two passes).
But how to distinguish administrative/source redexes?

7/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Ax. [M])
[MNT] = Ak. [M] (Am.[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax. [N] k)

8/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Ax. [M])
[IMNT] = Ak. [M] (Am.[N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax. [N] k)

1. where can the Ak. occur in the residual term?

8/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Ax. [M]])
IMN] = Ak. [M] (Am. [N] (An.m n k))
[etx=MinN] = Ak. [M] (Ax.[N] k)

1. where can the Ak. occur in the residual term?

8/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Axk. [M] k)
IMN] = Ak. [M] (Am. [N] (An.m n k))
[etx=MinN] = Ak. [M] (Ax.[N] k)

1. where can the Ak. occur in the residual term?

8/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Axk. [M] k)
IMN] = Ak. [M] (Am. [N] (An.m n k))
[etx=MinN] = Ak. [M] (Ax.[N] k)

1. where can the Ak. occur in the residual term?
2. which terms can be denoted by the k?

8/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Axk. [M] (Am.k m))
IMN] = Ak. [M] (Am. [N] (An.m n k))
[letx =MinN] = Ak. [M] (Ax. [N] (An.k n))

1. where can the Ak. occur in the residual term?
2. which terms can be denoted by the k?

8/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Axk. [M] (Am.k m))
IMN] = Ak. [M] (Am. [N] (An.m n k))
Metx=MinN] = Ak. [M] (Ax.[N] (An.k n))

1. where can the Ak. occur in the residual term?
2. which terms can be denoted by the k?
3. where do these k occur?

8/19

Analysis Control flow in the CPS

[x] =Ak.kx
[Ax.M] = Ak.k (Axk. [M] (Am.k m))
IMN] = Ak. [M] (Am. [N] (An.m n (Av.kv)))
[letx =MinN] = Ak. [M] (Ax. [N] (An.k n))

1. where can the Ak. occur in the residual term?
2. which terms can be denoted by the k?

3. where do these k occur?

8/19

Analysis Control flow in the CPS

AW N R

[x] = Ak.k[x]
[Ax.M] = Ak.k[Axk. [M] [Am.k m]]
[M N] = Ak. [M]|[Am. [N] [An.m n (Av.k[v])]]
[letx =MinN] = Ak. [M] [Ax. [N [An.k[n]]]

. where can the Ak. occur in the residual term?
. which terms can be denoted by the k?

. where do these k occur?

. what are the static abs. Ax. T and app. T[U]?

8/19

Analysis Control flow in the CPS

[x] = Ak.k[x]
[Ax.M] = Ak.k[Axk. [M] [Am.k m]]
[MN] = Ak. [M][Am. [N]|[An.m n (Av.k[v])]]
[letx =MinN] = Ak. [M][Am.letx =min [N] [An.k[n]]]

where can the Ak. occur in the residual term?
which terms can be denoted by the k?

where do these k occur?

what are the static abs. Ax.T and app. T[U]?

ga bk L=

are there variable mismatches?

8/19

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

9/19

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)
[1-:M>M—->M)—>M

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

9/19

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)
[1-:M>M—->M)—>M

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

(1:M-M
[M] = [M][?]

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)
[1-:M>M—->M)—>M

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

(1:M-M
[M] = Ak. [M] [k]

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)
[1-:M>M—->M)—>M

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

(] : M—>M
[M] = Ak. [M][AM.k M]

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)
[1-:M>M—->M)—>M

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]
(] : M—>M
[M] = Ak. [M] [AM.k M]
Examples

o [Mx.x] = Ak.k (Axk.k x)

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)
[1-:M>M—->M)—>M

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

(] : M—>M
[M] = Ak. [M][AM.k M]
Examples

o [Mx.x] = Ak.k (Axk.k x)
o [(Ax.x) (Ax.x)] = Ak. (Axck. k x)(Axk. k x)(Av. k v)

Result The one-pass CPS transform
(Danvy & Filinski, Representing Control, 1991)
[1-:M>M—->M)—>M

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

(] : M—>M
[M] = Ak. [M][AM.k M]
Examples

o [Ax.x] = Ak.k (Axk.k x)
o [(x.x) (Ax.)] = Ak. (Axk. k x)(Axk. k x)(Av. k v)
o [Afe.f x] = Ak.k (M. k Axk. k (F(Av.k v)))

Question What is the structure of CPS terms?

[x] x =«x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[MN] x =[M] [AM.[N] (AN.M N (Av.x[v]))]
[letx =MinN] x = [M] [AM.letx = Min [N] [AN.x[N]]]

[M] = Ak. [M] [AM.k M]

Quiz
Is there M s.t. [M] = Ak.k (Axk.x)?

10/19

Question What is the structure of CPS terms?

[x] x =«x[x]
[Ax.M] x = k[Axk. [M] [AM.k M]]
[MN] x =[M] [AM.[N] (AN.M N (Av.x[v]))]
[letx =MinN] x = [M] [AM.letx = Min [N] [AN.x[N]]]

[M] = Ak. [M] [AM.k M]
Quiz

Is there M s.t. [M] = Ak.k (Axk.x)?
What is the image of the one-pass CPS transform?

10/19

Question What is the structure of CPS terms?

[x] x =«x[x]
[Ax.M] x = k[Axk. [M] [AM.k M]]
[MN] x =[M] [AM.[N] (AN.M N (Av.x[v]))]
[letx =MinN] x = [M] [AM.letx = Min [N] [AN.x[N]]]

[M] = Ak. [M] [AM.k M]
Quiz

Is there M s.t. [M] = Ak.k (Axk.x)?
What is the image of the one-pass CPS transform?

Motivation
A precise syntax for CPS terms?

10/19

Analysis Output syntax of the one-pass CPS

[[1-:M->M—->M)—M
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av. [v])]
[letx = MinN] x = [M] [AM.letx = Min [N][AN.x[N]]]

1 :M-M
[M] = Ak. [M] [AM.k M]

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>S)>U
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. [v])]
[letx = MinN] « = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

»ﬂ
]

11/19

Analysis Output syntax of the one-pass CPS

[1-:M—(T—-S)—-U
[x] x =x[x]
[Ax. M « = x[Axk. [M][AM.k M]]
[MNT k = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinNT x = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

»ﬂ
]

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. [v])]
[letx = MinN] « = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

»ﬂ
]

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. [v])]
[letx = MinN] « = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

»ﬂ
]

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. [v])]
[letx = MinN] « = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

iﬂ
Il

n=Axk.S|x|v

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. k[v])]
[letx = MinN] x = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

iﬂ
Il

n=Axk.S|x|v

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. k[v])]
[letx = MinN] x = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

Su=kT|TT((M.S)|letx=TinS
T:=Axk.S|x|v
p:=

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. k[v])]
[letx = MinN] x = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

Su=kT|TT((M.S)|letx=TinS
T:=Axk.S|x|v
p:=

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (. k[v])]
[letx = MinN] x = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

Su=kT|TT((M.S)|letx=TinS
T:=Axk.S|x|v
P::=Ak.S

11/19

Analysis Output syntax of the one-pass CPS

[T :M—>(T—>5S)—>S
[x] x = x[x]
[2x.M] x = x[Axk. [M][AM.k M]]
[MN] x = [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx = MinN] x = [M] [AM.letx = Min [N][AN.x[N]]]

-1 :M—-P
[M] = Ak. [M] [AM.k M]

Su=kT|TT((M.S)|letx=TinS Serious terms
T:=Axk.S|x|v Trival terms
P::=2k.S Programs

11/19

Result The syntax of CPS terms

S:=kT|TT((.S)|letx=TinS Serious terms
T::=Axk.S|x|v Trival terms
P::=2Ak.S Programs

12/19

Result The syntax of CPS terms

S:=kT|TT((.S)|letx=TinS Serious terms
T::=Axk.S|x|v Trival terms
P::=2Ak.S Programs

Notes
e distinguished x (source), v (value), k (continuation) var.
e (Av.S) is a continuation

e programs await the initial continuation

12/19

Result The syntax of CPS terms

S:=ret; T|bindv=TTinS|letx=TinS Serious terms

T:=Axk.S|x|v Trival terms
P:.:=Ak.S Programs
Notes

e distinguished x (source), v (value), k (continuation) var.
e (Av.S) is a continuation
e programs await the initial continuation

e the continuation monad

12/19

Result The syntax of CPS terms

S:=ret; T|bindv=TTinS|letx=TinS Serious terms

T:=Axk.S|x|v Trival terms
P:.:=Ak.S Programs
Notes

e distinguished x (source), v (value), k (continuation) var.
e (Av.S) is a continuation
e programs await the initial continuation

e the continuation monad

To go further

With typed input/output syntax, we can deduce typing of CPS
terms (see draft).

12/19

Problem [3-redexes or lets?

[(Axy.x) a b] =
Ak.(Axk.k (Ayk.k x)) a (Av.v b (Aw. k w))

13/19

Problem [3-redexes or lets?

[(letx=ainAy.x) b] =
Ak.letx =ain(Ay.x) b (Av.kv)

13/19

Problem [3-redexes or lets?

[letx =ain(Ay.x) b] =
Ak.letx =ain(Ay.x) b (Av.kv)

13/19

Problem [3-redexes or lets?

[letx =ainlety =binx] =
Ak.letx =ainlety =bink x

13/19

Problem [3-redexes or lets?

[letx =ainlety =binx] =
Ak.letx =ainlety =bink x
Remarks
e two representations for redexes in CPS terms
(B redexes and let)
e let gives more compact CPS terms
e no more apparent f3-redexes with let

e ...if considering nested [3-redexes

13/19

Problem [3-redexes or lets?

[letx =ainlety =binx] =
Ak.letx =ainlety =bink x
Remarks
e two representations for redexes in CPS terms
(B redexes and let)
e let gives more compact CPS terms
e no more apparent f3-redexes with let

e ...if considering nested [3-redexes

Motivation
More compact CPS terms (Sabry & Felleisen, 1993) (Danvy 2004)
let reordering optimizations

13/19

Problem [3-redexes or lets?

[letx =ainlety =binx] =
Ak.letx =ainlety =bink x
Remarks
e two representations for redexes in CPS terms
(B redexes and let)
e let gives more compact CPS terms
e no more apparent f3-redexes with let

e ...if considering nested [3-redexes

Motivation
More compact CPS terms (Sabry & Felleisen, 1993) (Danvy 2004)
let reordering optimizations

Proposition

Nested redexes — lets, then CPS-transformation (2-pass)?
13/19

Analysis The syntax of f-normal CPS terms

S:=kT|TT((.S)|letx=TinS Serious terms
T::=Axk.S|x|v Trival terms
P::=2Ak.S Programs

14/19

Analysis The syntax of f-normal CPS terms

S:=kT|TT(.S)|letx=TinS Serious terms
T::=Axk.S|x|v Trival terms
P::=2Ak.S Programs

14/19

Analysis The syntax of f-normal CPS terms

S:=kT|IT(Av.S)|letx=TinS Serious terms
T::=Ak.S|1I Trival terms
Ii=x|v Identifiers
P::=2k.S Programs

14/19

Analysis The syntax of f-normal CPS terms

S:=kT|IT(Av.S)|letx=TinS Serious terms
T::=Ak.S|1I Trival terms
Ii=x|v Identifiers
P::=2k.S Programs

Remarks

e identifiers = “atomic terms”

e CPS is now context-sensitive

14 /19

Result CPS transformation of f-redexes (panvy, 2004)

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[M N x = [M] [AM.[N] (AN.M N (Av.x[v]))]
[letx =MinN] « = [M] [AM.letx =Min [N] [AN.x[N]]]

15/19

Result CPS transformation of f-redexes (panvy, 2004)

[xDl; x = x [y (x)]
[Ax. My k = k[Axk. [M]o[AT.k T]]

[MN]; k = [MIsp[AT. INT,[AU.T[UJ[AV. x [V]]]]
[letx =MinN]; k = k[ATk.letx = Tin [M];[AM.x[M]]]

Yoll) =1

15/19

Result CPS transformation of f-redexes (panvy, 2004)

[xI; x = x[v(x)]
[Ax. My k = k[Axk. [M]o[AT.k T]]
[Ax.M]sq) k =« [ATk.letx = Tin [M]);[AM. x[M]]]
[M NT; x = [M] sy [AT. [NT;[AU. T[U][AV. x [V]]]]
[letx =MinN]; k = k[ATk.letx = Tin [M];[AM.x[M]]]

Yoll) =1

15/19

Result CPS transformation of f-redexes (panvy, 2004)

[xI; x = x[v(x)]
[Ax. My k = k[Axk. [M]o[AT.k T]]
[Ax.M]sq) k =« [ATk.letx = Tin [M]);[AM. x[M]]]
[M NT; x = [M] sy [AT. [NT;[AU. T[U][AV. x [V]]]]
[letx =MinN]; k = k[ATk.letx = Tin [M];[AM.x[M]]]

Yo(l) =i
Yy = ATK.IT(Av.x [y,(v)])

15/19

Result CPS transformation of f-redexes (panvy, 2004)

[-].-:VI:N.M— (1;,—>8)—S

[xI; x = x[v(x)]
[Ax.MJ o k = k[Axk. [M]o[AT.k T]]
[Ax.M]sq) k =« [ATk.letx = Tin [M];[AM. x[M]]]
[M NT; x = [M] s [AT. [NT;[AU. T[U][AV. x [V]]]]
[letx =MinN]; k = k[ATk.letx = Tin [M];[AM.x[M]]]

Y.(4): VI: N, I > 14

Yo(l) =i
Yy = ATK.IT(Av. x[y,;(v)])

Result CPS transformation of f-redexes (panvy, 2004)

TO:T
tsp=T—(t;—>8)—>S
[-].-:VI:N.M— (1;,—»8)—S

[xI; x = x[v(x)]
[Ax.MJ o k = k[Axk. [M]o[AT.k T]]
[Ax.M]sq) k =« [ATk.letx = Tin [M];[AM. x[M]]]
[M NT; x = [M] sy [AT. [NT;[AU. T[U][AV. x [V]]]]
[letx =MinN]; k = k[ATk.letx = Tin [M];[AM.x[M]]]

YP.(4): VI: N, I > 14

Yo(l) =i
Yy = ATK.IT(Av.x[y,(v)])

Problem mn-redexes for tail calls

[Ax.fx (gx)] =
Ak.k (Axk.g x (Av.fv (Aw.kw)))

16 /19

Problem mn-redexes for tail calls

[Ax.fx (gx)] =
Ak.k (Axk.gx (Av.fv (Aw. kw)))

16/19

Problem mn-redexes for tail calls

[Ax.fx (gx)] =
Ak.k (Axk.g x (Av.f v k))

16/19

Problem mn-redexes for tail calls

[Ax.fx (gx)] =
Ak.k (Axk.g x (Av.f v k))

Remark

e tail calls generate “n-redex”

¢ induces more (administrative?) substitutions

Motivation
Support for tail calls in later passes

Proposition

CPS-transformation, then n-reduction?

16/19

Analysis The syntax of tail-recursive CPS terms

w=Ak.S

p Programs
S:=kT|IT(Av.S)|letx=TinS Serious terms
T::=Mk.S|I Trival terms
I

n=xv Identifiers

17/19

Analysis The syntax of tail-recursive CPS terms

w=Ak.S

p Programs
S:=kT|IT(Av.S)|letx=TinS Serious terms
T::=Mk.S|I Trival terms
Ii:=x]|v Identifiers

e continuations can be k

17/19

Analysis The syntax of tail-recursive CPS terms

P:=2k.S Programs
S:=kT|ITC|letx=TinS Serious terms
Cu=M.S|k Continuations
T::=Axk.S|1I Trival terms
Ii:=x|v Identifiers

e continuations can be k

17/19

Analysis The syntax of tail-recursive CPS terms

P:=2k.S Programs
S:=kT|ITC|letx=TinS Serious terms
C:=M.S|k Continuations
T::=Axk.S|1I Trival terms
Ii:=x|v Identifiers

e continuations can be k

e continuations cannot be (Av.k v)

17/19

Analysis The syntax of tail-recursive CPS terms

P::=2k.S
Su=kT|U
U:=ITC|letx=TinS
C:=M.U|k
T::=2xk.S|1I
I:=x|v

e continuations can be k

e continuations cannot be (Av.k v)

Programs
Serious terms
Computations
Continuations

Trival terms

Identifiers

17/19

Analysis The syntax of tail-recursive CPS terms

P::=Ak.S
Su=kT|U
U:=ITC|letx=TinS
C:=MU|k
T::=2xk.S|1I

I:

=x|v

e continuations can be k

e continuations cannot be (Av.k v)

Programs
Serious terms
Computations
Continuations

Trival terms

Identifiers

17/19

Result Tail-recursive, f-normal CPS transformation

[x] x = x[x]
[Ax.M] x = x[Axk. [M] [AM.k M]]
[M N x = [M] [AM.[N] (AN.M N (Av.x[v]))]
[letx =MinN] « = [M] [AM.letx =Min [N] [AN.x[N]]]

18/19

Result Tail-recursive, f-normal CPS transformation

[x] x = x[x]
[Ax.M] x = x[Axk. [M]'[k]]
[M N x = [M] [AM.[N] (AN.M N (Av.x[v]))]
[letx =MinN] « = [M] [AM.letx =Min [N] [AN.x[N]]]

18/19

Result Tail-recursive, f-normal CPS transformation

[x] x = x[x]
[Ax.M] x = k[Axk. [MT'[k]]
[MN] x = [M] [AM.[N] (AN.M N (Av.x[v]))]
[letx =MinN] x = [M] [AM.letx =Min [N][AN.x[N]]]

[x] k=kx
[Ax. M k =k (Axk. [MT'[k])
[MNT' k= [[M] [AM.[N] (AN.M N k)]
[letx =MinN]’' k= [M] [AM.letx = Min [N] [AN.x[N]]]

18/19

Result Tail-recursive, f-normal CPS transformation

1 :-M—>(T—-U)—>U
[x] x = x[x]
[Ax.M] « = k[Axk. [MT'[k]]
IMN] k= [M] [AM. [N] (AN.M N (Av.x[v]))]
[letx =MinN] k = [M] [AM.letx =Min [N] [AN.x[N]]]

[(]1-:M—>k—S

[x] k=kx
[Ax. M k =k (Axk. [M]'[k])
[MNT' k= [[M] [AM.[N] (AN.M N k)]
[letx =MinN]’' k= [M] [AM.letx = Min [N] [AN.x[N]]]

18/19

Conclusion

In the draft

e the first CPS

> one-pass
> tail-recursive

» [-normal

» in a dedicated syntax

e all the code in OCaml

e simply typed input/output syntax (GADT)
(type-preserving transformations)

19/19

Conclusion

In the draft

e the first CPS

> one-pass
> tail-recursive

» [-normal

» in a dedicated syntax

e all the code in OCaml

e simply typed input/output syntax (GADT)
(type-preserving transformations)

“Type-directed transformation optimization”

pathological example ~» optimization
~» syntax/typing modification

~» algorithm modification

19/19

