Thesis Proposal — Dottorato di Ricerca in Informatica

Towards formalized mathematics repositories
based on type theory

Matthias PUECH*

Dipartimento di Scienze dell’Informazione — Universita di Bologna
Laboratoire PPS — Université Paris 7-Denis Diderot

dir. Andrea ASPERTI ¢ Hugo HERBELIN

February 28, 2010

Contents
1 Automation in proof assistants 3
1.1 Stateoftheart 3
1.1.1 First-order theorem proving 3
1.1.2 Proof search in ITP systems)
1.2 Issues in ITP automation 5)
1.2.1 Embedding first-order calculi)
1.2.2 Generic proof search in type theory 7
1.3 Further directions 10
1.3.1 Sequent calculus proof search 10
1.3.2 Strategic proof search L. 12
1.3.3 Implementation issues 14
1.3.4 Isomorphisms in the CIC 15

*puech@cs.unibo.it

mailto:puech@cs.unibo.it

INTRODUCTION i

2 Semantic patches 17

2.1 Motivations 18

2.2 Methodology 19

2.3 Related work 20

2.4 Patches as metatheorem composition 21

2.4.1 Definitions 22

242 Exampleso 24

2.5 Directions 25
Introduction

The fields of formal proofs, automated reasoning and verified software, have made
great advances in the last forty years, since the seminal works of on the checkable
proof language Automath by De Bruijn [1970] and the automated theorem prover
Ngthm from Boyer and Moore [1988]. They appear today as a mature technology,
used not only academically but also in the industry; the diversity of the approaches
also witnesses the vivacity of the field: there are plethora of systems implemented
for various, more-or-less specific uses, from the all-automated theorem prover for
a domain specific application to the general-purpose, interactive mathematical
assistant embedding a rich and expressive logic.

In particular, proof assistants, also known as interactive theorem provers, are
tools intended to help the human to develop formal proofs: the proof itself is
constructed and checked by the machine, but guided by the human in an interactive
collaboration. Among these, we count Isabelle/HOL, PVS, Coq, Mizar, Matita and
much more. These tools have recently enjoyed a great success, leading to rich
formal mathematics libraries and complex developments, see Asperti et al. [2009]
for a critical and historical account on formal verification.

The factors of this success are in our opinion threefold: first, advances on
computational logic have lead to the development of powerful and solid foundational
languages of proofs, not only made intuitive for the mathematician by borrowing
their methods, but also suitable to the exploitation of the computational power
of modern computers. Secondly, the wealth of implementation efforts has lead
to a well-understood architecture (Asperti et al. [2007]), and efficient methods
for the multitude of algorithmic tasks performed in this context. Finally, the
tight interaction between users and developers of these systems (it is actually
far from exceptional to be both) has helped creating rich and usable interfaces,
witness for example the reinterpretation of the proof language of Coq by Gonthier
and Mahboubi [2008] originally intended as domain-specific but inspiring new
generations of systems.

ii INTRODUCTION

However, a lot of the paradigms now taken for granted in the development of
formal mathematics are inherited from programming. For example, most proof
assistant are based on an LCF-like, procedural tactic language for devising proofs,
making the act of proving alike to the one of programming and strayed from the
common vernacular used in informal mathematics. Moreover, the validation process
of a formal proof, stepwise and linear because modelled after the automatic process
of compilation, do not reflect the way a user would like to interact with the system:
not only would he like to make progress and advance toward the solution (the only
choice today), but also to retract from previous declaration, refine and modify his
idea. .. Also, this rigidity does not leave room at all for team-work, where several
people interact on the same (large) document, possibly modifying concurrently the
main development in an incompatible way, between each other or with respect to
previous developments.

If, following Dowek [2007], we believe that machine-checkable proofs and the
mechanization of proof-search made mathematics enter its “industrial era” after a
long history of handicraft, an era where unverified, one-man work is not acceptable
anymore due to the increased complexity of the manipulated concepts, then we are
in urge of finding techniques to adapt these new tools to the practice of mathematics.

We believe that the simultaneous work on two aspects of this problem would
bring up new potentialities and ways of formalizing mathematics. Increasing
the inference power of the proof language is one of them: most of today’s proof
languages are tightly bound to the underlying logic, whereas informal mathematics
use extensively and implicitly notations, isomorphisms and shortcuts. Most proof
assistants provide the strict minimum to deal with them, usually in a more-or-less
ad-hoc way; increasing the capability of automating “trivial” parts of the reasoning
would be a first step to the design of a high-level, highly ambiguous but still fully
checkable proof language. A second step, concerning the interactivity of the formal
development process, is the study of the impact of changes in large developments.
A high-level proof language comes with possibly high computational power required,
and one cannot afford then to recheck the whole development after each change,
as small and insignificant as they may be. Moreover, we want to develop the
interactive aspect of these tools, to be able to use them even during the discovery
phase, where change happen often and deeply into the structure of the development.
By analyzing finely the dependency between concepts and even intra-concept, we
hope to render this interaction between the computer and the user, but also even
between several users.

All these tools are, in a nutshell, implementations of a particular logic, along
with a rich language to conduct the construction of proofs, mechanisms of inference
to relieve the user from the most tedious and repetitive tasks, and input facilities.
While the ideas underlying the input of proofs are shared by most of these tools,

INTRODUCTION iii

a particularly interesting subclass of them are those based on type theory. Type
theory is a calculus having the notable feature of being able to be seen dually as
an intuitionistic logic and as a programming language allowing to give and check
rich specifications to programs. This duality, also known as the Curry-Howard
correspondence, opened a whole new field of research, both practical and theoretical.

We propose here to tackle the two issues developed above in the context of
proof assistants relying on type theory, and especially the two developed in both
our universities: Matita for the University of Bologna, Coq for the University Paris
7. This proposal is therefore organized in two parts. The first is an account of the
state-of-the art in terms of automation of proofs, both on a proof-theoretic point
of view and on existing solutions implemented. It finishes with some directions
considered for further work and works in progress in this area. The second part
presents an ongoing work on semantic patches, a preliminary theoretical study for
the management of changes in type theory that could eventually serve as a basis for
an integration into an existing system. It finishes also with some possible directions
for further work. We begin with a short overview of the architecture of the proof
assistants we plan to work on.

INTRODUCTION 1

Architecture of a proof assistant

Both our proof assistants of interest, Coq and Matita are based on the Calculus of
Inductive Constructions (CIC) of Paulin-Mohring [1996]. It is a very expressive
logic, built on a variant of Martin-Lof’s type theory with polymorphism a la
System F and a hierarchy of predicative universes. It supports, as in Martin-Lof
presentation of his type theory, the inductive definitions of objects, and supports
the proofs-as-types paradigm. Among other features, it provides recursive function
definitions and an impredicative universe for dealing with logical propositions.

Numerous systems based on a variant of this framework have been implemented:
Agda, NuPRL, Epigram and much more. As time went by, the architecture of
these tools has become better and better understood. One particularly important
criterion in their conception is the so-called De Bruijn criterion. They all share
a common layered software architecture, as sketched for Matita in Asperti et al.
[2007] for example, and are often qualified of “skeptical proof assistants”. We give
a brief overview of each layer from the innermost to the outermost one, as it is
implemented in Matita (this may vary for other systems):

Kernel Their principle is to isolate a little portion of human-understandable code,
the kernel, only dedicated to the task of proof-checking, i.e. the verification
of the well-typing. This component is responsible for the validation of all
generated proofs, and is this way the only piece of code that must be trusted
in order to trust the whole system.

Refiner Writing directly proofs in the language of the CIC is an almost impossible
operation: not only would it be very hard to follow, but also very boring,
because the language is very redundant. On top of the kernel, the refiner is
in charge of completing all logical information omitted by the user, with the
help of dedicated mechanisms: type inference allows you to omit some type
constraints if they can be inferred by the system from the context. Coercions
simulate a common practice in the mathematical discourse, i.e. the use of a
super-structure in place of one of its components (example, a group instead
of its carrier set). The more recent canonical structures and type classes
allow to avoid mentioning the context by choosing, on one side a canonical
representative of the context (a particular mathematical structure) or relying
on inheritance between structures.

Library management All proofs and definitions in these proof assistants are
devised thanks to a mechanism of definitional equality (in the sense of
definition expansion). All the definitions are stored in a library, with the
ability to import and reuse previous development. This layer is in charge of

2 INTRODUCTION

the management of such a library: loading, saving, managing namespaces as
well as modifying previous definitions.

Proof management Some of the systems mentioned allow the stepwise construc-
tion of proofs thanks to a library of tactics, which are tools to build proofs
incrementally by refining the previous state of the proof. This layer manages
the call to tactics in this process, and the verification of their result by the
refiner (which in turns calls the kernel).

Tactics This layer makes up the set of specific tactics of proof refinement. It is
usually built in a hierarchical manner, some tactics calling some others for
specific subtasks.

Disambiguation Very often in the context of informal mathematical vernacular,
ambiguity of the notations used happens. This layer is responsible for mapping
potentially ambiguous notations and names to their logical, non-ambiguous
counterpart by inferring it from the context.

User interface Then, some logic-independent layers are in charge of the parsing
of formulas, their display, and graphical user interface management etc. The
traditional model of GUI for a big family of these tools (implemented in the
emacs editor as ProofGeneral) is a text editor with three panes: one displaying
the actual script, the second the state of the current proof, and the last the
possible messages to the user. One compiles a part of the script by moving a
cursor forward and backward.

1. AUTOMATION IN PROOF ASSISTANTS 3

1 Automation in proof assistants

The kernel of interactive theorem provers based on type theory, namely the logic
they implement and their typing algorithm, is now a well-understood part of such
systems. But the very fine granularity of the proofs one can write directly for the
kernel to check makes this act almost impossible for any relatively involved proofs.
This led to the direction of improving the capacity of these systems to receive
partial proofs, possibly with omitted parts or information, and infer them back fully,
to the point where the kernel can check them. Many different mechanisms fulfill
this task on different levels: coercions permit to assimilate notions corresponding to
different underlying objects, implicit arguments allow to omit redundant arguments
of functions and theorems, the recent type classes are an incarnation of the ad-hoc
polymorphism present in some programming languages. To a certain extent, most
of the tactics of Matita or Coq belong to this category as well: their application
triggers the construction of complex proof objects.

In this section, we will focus on one of the most involved of such mechanism,
commonly called automation tactics or mechanism. As opposed to the others, the
goal of these is to provide a high-level method for (more-or-less blindly) searching
a proof of a given statement. The utility of these helpers are needless to be proved
anymore, but we want to advocate here a particular use of them. Two problems
arise from the current, low-level view on formalization. First, devising proofs
directly in type theory or with the help of low-level tactics is a tedious exercise and
reading an already proof is often difficult. Secondly, the different variations and
peculiarities of each proof assistants make their proofs not interoperable, resulting
in isolated, balkanized formalizations and duplicated efforts. The development of
the automation techniques of all kind are a direction towards the compensation of
both these problems: they allow to alleviate the proof burden and are a required
step towards the design of very light proof languages that can be embedded in
different foundational dialects and proof assistants, and is therefore necessary for
the design of large, formalized mathematics repositories.

1.1 State of the art

We begin by reviewing some of the common techniques of automated theorem
proving, and discuss their adaptation and limitations in the setting of type theory,
along with implemented generic methods of proof search in proof assistants.

1.1.1 First-order theorem proving

Automated theorem proving Automated theorem proving, or automated
deduction, is the field dedicated to the search of proofs of mathematical theorems

4 1. AUTOMATION IN PROOF ASSISTANTS

by computer software. Theorem provers are tools taking a mathematical statement
as input, and outputting a proof of it (or just succeed) or fail or loop forever if the
statement isn’t provable. Most general purpose theorem provers rely on classical
first-order logic (FOL). These include for example Vampire, Ergo, Waldmeister,
Mace4 /Prover9, SPASS or more recently Imogen. In this part we will review some
of the popular techniques and framework for classical and intuitionistic first-order
theorem proving and discuss their potential use in type theory.

Resolution of Robinson [1965] is the one, if not the most popular complete
method for semi-deciding the refutation proof problem: given a statement, we
can apply this method; if the statement is unsatisfiable in FOL, the method will
eventually terminate with a refutation of it. The design and implementation of such
a method is discussed at length in Riazanov and Voronkov [2002]. Many recent
provers rely on resolution, which has proved empirically to be the most efficient.
Since Robinson’s discovery, many complete refinements have been proposed since
its introduction: ordered resolution, selection etc. (see Bachmair and Ganzinger
[2001] for an overview). It consists of two phases: the transformation of the problem
into clausal form, and the resolution itself, which is the iterated application of a
(single, complete) rule mimicking the cut rule of natural deduction.

Equality is an ubiquitous notion in mathematics. Yet, FOL doesn’t include
any special treatment for this symbol, which makes it very inefficient to use in
practice. A better way to treat the equality is by means of rewriting. It is the goal
of paramodulation (Wos and Robinson [1968]), superposition and their derivatives
(see Nieuwenhuis and Rubio [2001] for a complete survey). They all are dedicated
inference rules for treating equality externally to the logic, as a mean to replace
equals by equals in formulas. For this purpose, completion (Bachmair and Ganzinger
[2001])is a useful tool to orient equations and avoid uncontrolled rewriting as much
as possible.

Besides these popular techniques, the tableauz method and their variants (see
Hahnle [2001]) is a proof search method for first-order sequent calculus. It has been
implemented in various theorem provers, e.g. 3TAP (Beckert et al. [1996]) and the
one from Paulson [1999]. FOL extended with inductive definitions has been also
the object of studies in ATP systems, resulting in methods like rippling (Bundy
et al. [1993], Bundy [2001]), or inductionless induction (Comon [2001]). The first
is a method to cope with the proofs of inductive cases by syntactic methods, the
second is an efficient embedding of induction into a extension of FOL. Intuitionistic
theorem proving is still an active field of research, a recent success being Imogen
from McLaughlin and Pfenning [2009], relying on the focusing discipline (Andreoli
[1992]).

1.2 Issues in ITP automation 5

1.1.2 Proof search in ITP systems

In order to give more inference power to existing proof assistants, recent efforts
have been put on adapting the efficient proof-search methods designed by the
automated deduction community to proof assistants, by adapting them in order
to generate proofs and translate them to the tool’s format, for it to recheck them
afterward. We will first do a quick review of the efforts in this domain.

Embedding first-order calculi First-order theorem automated theorem provers
and the paradigms they rely on are rich and very efficient. It would seem quite
natural to make use of these advanced tools for interactive theorem proving.
One can achieve this in two ways, either by interfacing an existing tool through
e.g. a dedicated tactic, or by designing a purpose-built theorem prover that
fits the particular needs of the interactive system. PVS has a rich collection of
decision procedures and generic proof search tools. HOL was interfaced with
various first-order theorem provers such as resolution-based Gandalf (Hurd [1999])
and Metis (Hurd [2003]). Isabelle was first interfaced with its dedicated prover
based on the tableaux method by Paulson [1999] and more recently with Vampire
(Meng et al. [2006]). A generic communication protocol between Coq and external
provers is being developed (the tactic extern). Since recently, Matita uses its own
paramodulation-based tool (Asperti and Tassi [2010]).

Generic proof search in type theory Besides the embedding of first-order
automation techniques, proof assistants generally come with some generic proof
search facilities, devised this time entirely in the type theory. These tactics, known
as auto in Coq and // in Matita, have at their core a mechanism analogous to the
resolution process introduced earlier. There are important differences with the
integration of external tools as introduced above: their integration directly into
the type theory allows them to exploit its full higher-order nature, along with their
implementation details like definitions unfolding or inference mechanisms.

1.2 Issues in ITP automation
1.2.1 Embedding first-order calculi

The deep conceptual differences between both approaches (interactive and auto-
mated theorem proving, higher-order vs. first-order) raises questions that still need
generic answers. We plan on developing the line of work initiated by Asperti and
Tassi [2010] in Matita.

6 1. AUTOMATION IN PROOF ASSISTANTS

Proof translation Some of the interfaces from interactive systems to automatic
ones share the same architecture, at least in systems based on type theory. We will
expose here the approach taken in Asperti and Tassi [2010] With the exception
of PVS which doesn’t require a proof and trusts its decision procedures, they all
need to get back a trace from the external tool to reconstruct a proof in their own
language. The architecture is then composed of:

1. A forgetful translation from the type theory to the (first-order) language of
the tool. It takes the current goal along with a set of hypothesis to a (axioms,
problem) pair. This pair is run by the external tool and possibly returns a
trace of the proof;

2. An interpretation function, which interprets the trace into a (possibly incom-
plete) proof object in the type theory;

3. A retyping mechanism, which infers the missing part of the returned proof
object and checks it in the type theory.

From this methodology, we see that the integration of external tools relying on
weaker or at least different logics is necessarily an incomplete method based on
heuristics, and it is often difficult to predict their behavior.

The forgetful translation is not only the operation of removing all type informa-
tion from a statement to get a first-order term: type theory possibly performs compu-
tations in statements, has defined objects that can be unfolded. For example, how do
we translate the higher-order goal ¥n m p, (n+1)xm < (n+1)xp — m < p? Possibil-
ities are numerous: S nxm < SnxpkF Sm < porm+nsm < p+nxp — m+1<p
or any intermediate steps of unfolding the constants +, % or < and reducing their
content. Depending on the set of axioms provided to the external tool, some will
be provable, some not.

The interpretation of trace object is also a delicate operation, heavily depending
on the calculus used by the external tool. Traces are representations of the success
of the proof process: they could be the list of rewriting steps from the axioms to the
problem statement for paramodulation, or the list of clauses and literals used by
the resolution. The interpretation of a paramodulation step is pretty easy since its
logical meaning (rewriting) is admissible in type theory (by means of the induction
scheme of equality). It becomes quite involved when considering a blind method
like resolution: the initial preprocessing transforming the problem into a set of
clause, which is not admissible in intuitionistic logic, has to be traced carefully and
checked for validity. The same goes for another blind method, SMT solving.

Finally the last part of the process — retyping the result of the interpretation
— is not guaranteed to be feasible since the type information was lost in the first
place. Sometimes the external prover would success and return a valid trace of the

1.2 Issues in ITP automation 7

first-order translated goal, which has no meaning in the type theory and couldn’t be
retyped. The inference of the missing type information can also be quite involved
and may itself rely on proof search (see Asperti and Tassi [2010] for details).

Automated vs. interactive paradigms But the conceptual differences be-
tween automated and interactive theorem proving go beyond the only untyped vs.
typed or first-order vs. higher-order problems.

One lies in the very purpose of automation in these two paradigms: ATP
systems are usually provided with a small set of axioms for a given theory, often
minimal, and deduce new facts from these onwards, until the goal is reached. Thus,
they generate cut-free proofs, in the sense that they don’t infer useful intermediate
lemmas that would need to be proved afterward. On the other hand, automation in
ITP system usually relies on a huge set of objects, both axioms defined by the user,
logical rules in the form of constructors and destructors for logical connectives,
and intermediate proved lemmas, and this set grows each time a new object is
introduced.

From this emerges two difficulties of integrating I'TP techniques into ATP. The
first is that provers are not necessarily optimized for treating big sets of initial
axioms, nor for dynamically extending those sets as is required for an efficient
integration. The pre-treatment of generating and translating these sets might
be prohibitive if not correctly designed in the I'TP software from the beginning.
The second and most important difficulty is the one of choosing among those sets
the needed objects. Usually, the whole library of proof assistants contain very
redundant objects: proofs trivially subsuming other proofs (e.g. by computation,
or by superposition of two results), different proofs of the same statement, different
implementations of the same logical connective... To be treated efficiently and
avoiding duplicated work, one would have to choose in the whole set of objects of
the library the relevant subset for the given problem, minimal but with enough
information for the proof to succeed. This issue has not been throughly tackled
and would need a careful study.

1.2.2 Generic proof search in type theory

The tactics and methods of proof search as implemented in Coq and Matita can
fulfill different purposes and usages, that we can classify according to two criteria.
First, we discriminate on the purpose intended by the user: it might be used
to automatically fill in some of the small “trivial” gaps leaved by the user in a
proof (what we call small-scale automation), for example leaving to the machine
the inference of one trivial case among others; it might also be intended as a
help to devise the proof when the user totally lacks intuition of it (large-scale
automation). This second purpose is obviously more difficult to achieve, and it

8 1. AUTOMATION IN PROOF ASSISTANTS

is probably unrealistic considering the results obtained in the dedicated field of
automated theorem proving. Secondly, we separate two different modus operandi
of the automation mechanism: some of them allow to automatically finish a proof
and fill in the proof tree until its leaves, may it be a trivial step of reasoning
(small-scale) or a more involved one requiring to explore deeply the search space
(large-scale). These take the form of classic tactics like auto or //. Some of them
on the other hand are interleaved in the proof process and allow to incarnate a
certain quotient on applicable proof steps or statements. This is the case of Coq’s
type classes, or the recent smart apply tactic of Matita.

Intuitionistic resolution As explained earlier, the resolution mechanism as
usually presented is classical by nature. However, it is well known that this appears
as nothing more than a notational facility, and its core reasoning scheme is in fact
intuitionistic. It proceeds simply by maintaining a list of hypothesis and lemmas
along with the goal; at each step, it applies in turn all hypothesis and lemmas
whose head unifies with the current goal:

INTRO
I'z: AFB
Iz : A.B
APPLY
r-A4, ... I' A, r=B=C f:H(:vlel)...(xn:An).BGF
I'e=C

This backward-chaining method (from the goal to the hypothesis), although not
complete, helps the completion of easy goals. Because of the dependent nature of
the statements in the CIC however, this process is made more complex by the fact
that the application of a APPLY rule can introduce metavariables in the goal, that
is holes in a term of a known type. For example, the application of a transitivity
lemma on the relation R to a goal of the form R(a,b) produces two goals sharing
a metavariable: R(a,X) and R(X,b). This complicates greatly the control of the
proof-search process: one could naively think of it as a backtracking process on each
APPLY rules in turn, but this is erroneous: a goal, even closed by the application of
a O-ary application (an instance of the INIT rule of natural deduction), could result
in a backtracking if a metavariable was instantiated. Imagine in our example that
the goal R(a,X) is closed by a proof of R(a,c), but that the second instantiated
branch R(c, b) fails to be closed. One has then to backtrack on the first goal rather
than on the previous one, to be able to find a second, successful instantiation e.g.
R(a,d) and R(d,b).

Due to some limitation of its implemented tactic language, this subtlety is not

1.2 Issues in ITP automation 9

taken into account in Coq; whereas it is solved correctly by Matita. Both implement
a depth-first algorithm of the search tree.

Choice of hypothesis Contexts of proof assistants are not simple objects as
are their theoretical counterparts above: they are composed of many segments
and many kind of different objects, like definitions, inductive objects, constructors,
axioms. One question relative to these sort of automation is: should we consider all
of them as equally probable candidates? Both proof assistants solve the question
quite differently. They both implement a mechanism of priority among these
objects, taking some heuristics to determine them like the number of goals opened
by the application or the number of metavariables introduced. Besides that, Matita
takes however the approach of considering all objects as candidates except the most
general ones (induction principles for example that can be applied to any goal),
whereas Coq chose the approach of user-defined hints databases, associating to each
lemma a priority and a strategy such as Resolve (general strategy) or Immediate
(the goal has to be closed in one step after its application). Possible directions like
the refinement of these heuristics as well as the fine control of the strategies are
discussed in 1.3.2.

Definitions and computations Due to its higher-order nature and its defini-
tional mechanism, the logics underlying these proof assistants are subject to some
notions of reduction. Actually, the conversion rule of the CIC ensures that the
statements of the logic are all quotiented w.r.t computation. These computations
can be split into two different forms, that serve different uses: first, some real
computation can occur, as in P(2+42) = P(4) or Q(S n*m) = Q(n*m+n), and
a lemma applicable to one of its part should be equally applicable to the other.
The second is the use of the definitional mechanism to abbreviate some often-used
statement forms: for example, one might want to define transitive(R) to expand to
Vayz, R(z,y) — R(y, z) — R(z, 2).

This is the responsibility of the unification algorithm to generally determine
when these situation happen, when applying a lemma for example. It is a complex
part of a proof system, and often involves expansive computations. Thus, iterating
this process again and again when trying to APPLY all possible lemmas during
proof search can lead to substantial delays. To achieve good performance, indexing
techniques are generally used to rule out as fast as possible lemmas that don’t
need to be treated for a given goal because they won’t ever unify. However, these
data structures are purely first-order, and it is non-trivial to use them enough
so as to improve the efficiency but not to restrict too much the candidates and
miss some possibly successful ones. These techniques have been experimented, and
are discussed in more details in 1.3.3. In particular, the adaptation of these data

10 1. AUTOMATION IN PROOF ASSISTANTS

structures to take abbreviation-unfolding is a non-trivial, open problem.

1.3 Further directions

Besides the integration of the first-order prover in Matita, We would like to im-
prove the existing general-purpose proof search techniques available in these proof
assistants. The general methodology adopted is to design a procedure directly for
the Calculus of Inductive Constructions, by focusing as much as we can on the
user’s need. A preliminary analysis has been done by identifying clear examples of
situations where automation is wanted but that the tools available (in Coq for the
moment) are unable to cope with.

1.3.1 Sequent calculus proof search

The calculus of constructions is usually implemented in a natural deduction fashion,
at least in Coq and Matita: the context is used only to retrieve previously defined
object, and there is no way to modify it after its introduction. This proof style is
supported by the apply family of tactics that applies a lemma or an hypothesis to the
goal, progressing in a backward-reasoning fashion: one progresses from the goal to
the assumptions. This approach is however not always intuitive, and a second kind
of reasoning is supported in both tools. The lapply family of tactics (or apply with)
apply a lemma or an hypothesis to another hypothesis in the dual forward-reasoning
fashion. In this case, one progresses by transforming the assumptions until they
eventually match the goal. These two complementary approaches correspond to
two presentation of the theory of types, respectively the natural deduction and
sequent calculus style. Pure Type Sequent Calculus (PTSC) was introduced in
Lengrand [2006].

Forward-reasoning The automation methods described in 1.2.2 are, to the
best of our knowledge, relying on a backward-reasoning mechanism: the system
applies iteratively all possible applicable lemma and hypothesis. This method
has severe disadvantages: consider the sequent A A B - A. The only way of
proving it automatically is to introduce a metavariable and apply the projection
proj2 : VXY, X ANY — X to produce the sequent AN B+ AAY and to conclude
by instantiating Y to B. However, allowing the application of these projections,
and most lemmas that produce metavariables leads to an enormous search space
since they can be applied to any goals. They should be avoided as much as possible,
preferring simpler proofs: here an obvious solution is to apply the rule of sequent
calculus:
IA,B-C

T ANBFC

1.3 Further directions 11

to obtain the sequent A, B+ A and conclude immediately.

In the CIC, the conjunction is a defined object. In fact, A is an inductively
defined non-recursive predicate with one constructor and two independent hypoth-
esiss ANB:=conj: A— B — AAB. By a-conversion, the above rule of the
sequent calculus is valid if we replace A by any connective of the same shape. It is
also valid for connectives of the same “kind”: if we call conjunctions all inductive
definitions having an unique constructor, we can devise rules of forward-reasoning
for all of them.

Example 1. All of 3, N and record types are conjunctions. Therefore we can
devise the rules:

IA,B-C Ix: A Bx)FC oy Ay, A, EC
I AANBEC I3z : ABFC Co{xy s Ay A EC

The case of disjunction Can we treat inductive definitions with several con-
structors the same way? The naive application of the previous idea leads to a very
redundant proof search. Consider the goal AV B = C. If we apply the rule of left
disjunction to it, we are left with two goals AF C and B - C. If we can prove the
sequent = 7 : C' without using either A or B, then the previous application doubles
the work: we have to copy the proof 7 in both sequent. Therefore, the left rules
are to be applied more carefully for disjunctions.

A second (but wrong) idea is to apply them lazily: we keep them intact, until
the moment where we meet one of their components in the goal. Then we can
destruct them and continue with the second branch:

I'AFA T,BFA
[LAVBF A

T AVBFC

Unfortunately this method is not complete, as it may be possible to prove I', B = C'
but not the degraded judgement I', B - A.

We propose the following improvement: each disjunction sees its components
recorded, and proof search continues leaving the disjunction untouched. If an
instance of one of the component is met later once a proof 7 has been generated, we
backtrack to the point where the disjunction was introduced, break the disjunction,
apply 7 on its corresponding component, and we are left with the second branch of

12 1. AUTOMATION IN PROOF ASSISTANTS

the disjunction in the hypothesis.

: T AF A
TAVBF A .}
_ L T
”{ IAFC TL,BrC
T,AVBFC — T,AVBFC

To sum up, this technique allows to rewrite part of a proof during proof search
to optimize its number of inferences. This way, the depth of a proof can be reduced
and since most automated proof search have their depth bound, we increase the
inference power of these techniques.

Our goal is to generalize these techniques to all “kinds” of inductive. The
strategy described above could be generalized to recursive inductive by taking into
account the induction hypothesis, then performing induction by itself:

T,C(0) F C(0)

rm:Nkcm) }W
W{f T+ C(0) I',m:N, C(m) = C(S(m))
T.n:NFC(n) . On:NEFC

By combining forward- and backward-reasoning step in an efficient way and
respecting the underlying logic, we believe that we can build an automatic proof
search method, not only more efficient than the currently implemented methods,
but also more expressive and able to cope with the problem of deferring “trivial”
proof steps to the theorem prover, leaving to the user the load of only sketching
the proof.

1.3.2 Strategic proof search

Proof search however is not only about data structures and inference rules. It is
a dynamic process involving complex backtracking among goals, and even more
complex in the presence of metavariables. The goal of fast automation requires
a fine control on backtracking on the search tree, as was already hinted in the
previous section: attaining a given goal made us backtrack to a special position and
remember some pieces of information (the proof 7) to replay it without possible
backtracking on the next goal.

1.3 Further directions 13

Focusing We can go further in this idea by putting into practice ideas that
emerged in the focusing discipline of Andreoli [1992]. Focusing was introduced as a
winning strategy for proof search in the Linear Logic of Girard [1995], exploiting
the redundancies present in naive proof search. These redundancies are actually
not on space, but on time, i.e. it is not a problem of data structure for the proofs
(as was solved by proof nets), but a problem of backtracking in the proof search.
Indeed, it was identified that some rules of Linear Logic are invertible, that is, they
can be read in both directions, from top to bottom or from bottom to top. Thus
the application of such a rule does not change the provability of a sequent and can
be applied eagerly. The eager application of a rule is its application without the
need to backtrack before them: these rules just simplify the goal without modifying
their provability. Examples of invertible rules are the rules on conjunction and
disjunction, both left and right. This remark led to the specification of polarities
defined on sub-formulas: the negative parts of a formula comprises all chain of
invertible connectives, whereas the positive parts make up for the non-invertible
one. A phase change occurs during proof search when a connective is met that is
not of the same polarity as the previous one. Focusing is the strategy defined by:

e Applying eagerly all the connectives during the negative phase,

e Focusing on an arbitrary hypothesis during the positive phase and apply
eagerly all possible rules,

e Backtracking occurs only at phase change.

These ideas, although having been defined for linear logic, can apply to in-
tuitionistic logic as well, by embedding one logic into another by a (non-unique)
polarized translation. The automated theorem prover Imogen by McLaughlin and
Pfenning [2009] is based on these ideas, and proved to be a success.

A focusing approach applied to dependent type theory is still to devise though,
and would constitute a theoretical advance with clear applications to automated
proof search in type theory.

Backtracking strategies More generally, an efficient proof search requires a
control of backtracking that goes beyond what is currently implemented in Coq and
Matita: both proof assistants consider the all leaf of the search tree as potential
backtrack nodes, and don’t provide a way to specify strategies in a general way.
Furthermore, no distinction is made in the search between logical objects like
the defined connectives or the equality, and full lemmas with non-trivial proofs.
Coq’s Lige (Delahaye [2001]) is an attempt to provide a full-featured programming
language for automatic tactic application. It provides a recursion operator as well
as a matching construct on the current goal. However, it fails to define general

14 1. AUTOMATION IN PROOF ASSISTANTS

and extensible way of defining general-purpose automation tactics, specifically to
deal with non-determinism, and is confined to domain-specific application, like
the propositional fragment of logic (tauto), or the decision of some order-related
statements (order).

We propose, as a first step towards the design of strategies, to have a clear
developer-side language of specification of these strategies, expressive enough to
cope with previous ideas: backtracking by keeping a (partial) proof, focusing on a
particular formula, eagerly advance on the application of a particular rule. Also,
we would like to abstract from the names of the inductive objects to select them ac-
cording to their kind: (dependent, indexed, recursive) disjunctions, conjunctions. ..
The design of such a general method is of course interleaved with, and will be
nurtured by the discovery of particular wanted strategies. A good starting point
could be the backtracking monad of Kiselyov et al. [2005].

1.3.3 Implementation issues

When it comes to implementation, all the techniques mentioned above require
the manipulation of large sets of terms, and a recurring problem is to retrieve
terms satisfying some structural conditions, like unification with a given pattern.
One-to-one unification has a well-known, simple and efficient algorithm, but it
becomes under-optimal when applied iteratively on large sets of terms, because
a lot of sharing is lost. Term indexes are data structure used to store these sets,
making the retrieval of unifiers to a given pattern more efficient.

One data structure used for this purpose has been discrimination trees or nets
(McCune [1992]). It operates on the same principle as tries, viewing the terms
as flattened strings and retrieving following a given prefix (the pattern), like a
dictionary. A critical inefficiency of this structure is due to the loss of information
resulting from the flattening of terms. Substitution trees (Graf [1995]) are a popular
alternative. Their main idea is to index the terms according to their mgu’s, and
form a tree of substitutions. All these techniques are devised for first-order term
algebras. With the emergence of automated provers for higher-order logics like
Twelf, some attention has been drawn on the problem of higher order indexing, i.e.
indexing of A-terms modulo [-reduction (Pientka [2003]).

This problem is in general undecidable, but such a behavior is definitely a wanted
feature for our use. We will focus at first on a subproblem, already interesting and
not yet tackled: the goal of adapting these structure to be used modulo definitional
equality to abstract from certain abbreviations used commonly.

Moreover, if we decide to tackle the problem of the implementation of sequent
calculus proof search in a proof assistant, where the search is not only goal-directed
anymore but to some extend also directed by the hypotheses, we then want to
index hypothesis and be able to retrieve efficiently a term having e.g. a given form

1.3 Further directions 15

of hypothesis. However, due to the set nature of the context, the pair (hypothesis,
goal) cannot be presented as a term since it is to a certain extend possible to
permute all hypothesis. We then need to devise an efficient data structure of term
indexing taking into account to these permutations. It seems not trivial to adapt
existing term indexing methods for this purpose. Moreover, hypothesis in a context
are in type theory possibly dependent: the instantiation of one hypothesis triggers
the modification of all subsequent dependent hypothesis. Our data structure should
be able to instantiate the variables accordingly. This is however a known problem,
and most of the time a simple solution exists: the carry of a closure substitution
during the instantiation.

1.3.4 Isomorphisms in the CIC

The calculus of inductive constructions has the nice property of being a very
minimal foundational language, in which even very low-level mathematical concepts
can be defined. For example, the usual logical connectors V,3, A ..., even the
equality are not elementary objects but defined ones, thanks to the dependent and
inductive types features. However, this freedom implies that a given usual concept
can have a lot of different implementations. Some of them will be convenient or
efficient for a given task, other for other tasks.

A simple example is the definition of the logical equivalence in Coq’s standard
library. It is historically defined as A < B:= A — BA B — A, but a recent idea
was to change it to an inductive definition A < B := build_iff : (A — B) — (B —
A) — A < B. Although both definitions are strictly equivalent and represent the
same “usual” notion, such a change implied to rewrite almost all proofs relying on
the first definition and was then aborted.

Another less-trivial example is the representation of (natural) numbers. They
accept a wealth of different structural definitions — Peano, binary, machine,
axiomatic integers. .. — each supporting its own reasoning style, having different
efficiency properties etc. but, in the end, representing the same usual notion. When
one wants to begin a new development using natural numbers, she has to choose
from the beginning her implementation and stick to it throughout the development.
A change of representation would require to rewrite a large part of the development
and is therefore not affordable; moreover, accessing the results, or using properties
of another representation is simply forbidden.

These facts suggest that a certain notion of isomorphism, or simply of morphisms
between the concepts to be formalized and their (possibly numerous) implementation
would be a valuable study for both the modularity of the proofs (more results to
share among developments) and the abstraction of the proof language, which would
rely not on the actual implementation details of structures but on higher-level
concepts. The notion of type isomorphisms has been already well-studied in the

16 1. AUTOMATION IN PROOF ASSISTANTS

setting of functional programming languages like ML, notably by Di Cosmo [1995]
and proposals of integration in type theory by Barthe and Pons [2001] have been
made.

There seem to be many different approaches to this problem, some already
considered, some not. A first approach is the definition of axiomatic interfaces for
data structures or concepts, by means of records or module system in the fashion of
modular programming, like it is done in the formalizations of algebra undertaken in
the CIC. A natural number is a “complete” set of its “atomic” properties (terms to
be defined): successor lemmas, recursion. .. Individual representations of natural
numbers are then implementations of the interface. But what are these properties,
and how can one be sure that they are “minimal” or “complete” wrt. the common
concepts, or appropriate for her particular needs? Another pragmatic approach is
to “elect” a canonical representation, and to have translation functions/morphisms
from each of the other representations to it. This way, we lose their interesting
structural properties (e.g. efficiency), but we inherit from all properties proved
on them. A more bottom-up but automatizable proposition is to work directly
at the syntactic level and assimilate isomorphic terms in the calculus. Contrary
to the other suggestions, this is a meta-investigation of the isomorphisms in the
logical framework that could lead to the (partial) automation of reasoning modulo
some implementational details (like e.g. the iff example above). Inductive types
seem to provide a rich framework for studying these isomorphisms, since their
purpose is precisely to provide one-to-one correspondence between a “concept” (the
inductive type) and its possible alternative “implementations” (the constructors).
For example, we could assimilate function types which are equal modulo permutation
of arguments, or inductive types sharing the same structure, types defined on an
inductive type and the corresponding substituted inductive type... Building up
on this principle, we can hope to capture a large class of equivalences. A third
proposition is to rely on existing automation techniques to deal with isomorphisms.
Most instances of these isomorphisms can be expressed as equalities, for example
curryfying propositions: VABC, A — (B — C) = (AA B) — C. By providing a
way to apply logical rules up-to these equalities, we can somehow abstract from
a part of the logical specificities. This is the approach taken in the new sapply
facility of Matita described in Asperti and Tassi [2010].

The applications of such a study are numerous: abstract proof and logical
language mapped “by construction” to the foundational language, modularity of
the developments, increased automation. . .

2. SEMANTIC PATCHES 17

2 Semantic patches

The second, complementary axis of this proposal is the attempt to tackle the problem
of modularity and evolution in formally checked mathematical developments.

Even beside the notion of constructivism and the assimilation of proving and
programming in type theory, it is interesting to investigate the possible relationship
between the very methodologies employed in both fields, mathematics and computer
science. And by that we even intend the comparison of the daily workflow of both
scientist: one trying to prove a theorem, the other constructing a program to fulfill
a task. How does one or the other elaborates his object of study? What kind of a
posteriori modification is he prone to doing” What do these modifications imply
on the validity of the whole edifice? How to relate how both scientists collaborate
in a team? How do they rely on existing work to build up new results?

Recent efforts in the formalization of mathematical results have naturally led
to these questions and many of them remain largely unanswered, but the tendency
seems to be to adapt existing methods coming from software development, witness
for example the recent introduction of modules or separate compilation in proof
assistants like Coq or Matita , the use of dependency management tools (make) or
version control system (git, svn) to build and manage versions of a project. The
use of software engineering techniques for the management of a large formalization
project is even the thesis advocated in the manifesto of the Mathematical Compo-
nents team (Gonthier and Werner [n.d.]).

We propose to address a small part of these questions, namely the enhancement
and adaptation of version control systems to the management of mathematical
repositories, by means of what we preliminarily call a semantic patch system®. It is
a generic system allowing one to express transformations on formal developments,
and check that some semantic properties are preserved by the transformations, for
example well-typing or operational equivalence. Eventually, we hope to be capable
of expressing complex transformations on formal proofs, check them efficiently, and
manage distributed repositories of mathematics with it, guaranteeing by typing the
stepwise global consistency of the repository.

In the light of the Curry-Howard isomorphism though, we abstract totally from
whether we are talking about proofs or programs. That is why, in the following, we
start from today’s situation, where existing version control system are used both
in software and proof development, and we will not make any difference between
both use. Depending on his interest, the reader can thus choose his own side of
the isomorphism by translating program into proof, type into statement. .. or vice
versa.

1Joint work with Yann Régis-Gianas

http://www.pps.jussieu.fr/~yrg/

18 2. SEMANTIC PATCHES

2.1 Motivations

The programmer and the mathematician know very well that developing a new
theory or program is not a linear task: one do not open her text editor and
write down her ideas in a unique pass. In the case of program development, most
of the time is actually spent editing previously written code, correcting bugs or
implementing new features which are interleaved with previous ones. This idea is
not present at all in the text-editor/compiler paradigm, but to reflect it, version
control systems usually rely on a textual differentiation mechanism (diff's): the
comparison between two versions of a text file generates a patch which indicates
which lines of text are to be added or deleted to transform one into the other.

Developments, may it be proofs or programs, are usually split into files, each of
these containing a self-contained module of the whole development, an “atom” in
some sense. To compile — or check — the whole developments, we use dependency
management tools like make. These tools generate dependencies among the files, and
launch the compilation only on files that have been changed since last compilation,
and their dependencies. This process, known as separate compilation has files as
atomic objects, and dependency generation is performed uniquely on them, ignoring
their internal structure.

As intelligent and widely adopted as these tools have gotten, we believe that
they are not adapted for proof developments. Indeed, whereas compilation of a
program is usually fast enough for the programmer to rely on the usual interaction
loop ((edit; compile)*; commit)*, the operation of proof checking is usually too
expensive computationally to mimic this workflow. But even besides the time
factor, this “traditional” way of formalizing mathematics hinders the process of
mathematical discovery process: once a concept contained in a file is compiled,
it is considered frozen and any changes to it require the recompilation of all files
depending on it; the linearity of the development also gives no room for alternate,
inequivalent definitions. This fact has nonetheless been shown to be of crucial to
the mathematical discovery process by Lakatos [1964], and we believe that they
should be taken into account in the realization of mathematical assistants like Coq
or Matita.

Actually, we even dare to state that these tools and the workflow they suggest
were not even adapted for program development in the first place, but were just
a convenient approximation of the user’s intent. Here are some hints to justify
this argument: first of all, any change in a source file requires full recompilation of
all files depending on it, whereas a finer management of dependencies is possible
(function-wise for example). The basic operations of a version control system
such as svn or git are often very sensitive, error-prone and based on heuristics
(example, a merge). This is among other due to the fact that the signal-to-noise
ratio of a textual diff is often high, because semantically void changes like altering

2.2 Methodology 19

indentation have the same value as changing the argument of a function. Finally,
as they are not aware of the meaning of the text they are managing, these tools
don’t provide any consistency guarantee on the resulting files (except textual ones).

All these facts, if they are not a major drawbacks when applied to weakly
structured languages (e.g. assembler, or a KTEX document), gain a crucial im-
portance when considering a typed language (a functional programming language
for example) : we would like to make sure that a patch does not break the well-
typing (or any other property) of a source code. One more step forward, more
structure-awareness becomes essential when they apply to a proof language, where
the structure (the typing) is the only valuable information.

2.2 Methodology

We propose here to devise a system for semantic patches. It substitutes the idea of
textual transformation by:

e First preferring an abstract syntax tree representation instead of plain text;

e Secondly embedding semantic data into the transformations, in order to be
able to reason on them.

We want to design a language of patches, able to represent these transformations
and their semantic properties, thus capturing local changes in programs, as well as
their global effect on the whole project. We can see this goal as a refinement of the
former idea of “dependency”.

A semantic patch is a program intended to transform a program written in an
object language L. We focus, on the first iteration of the project, on the semantic
assertion of well-typing: from the object language’s syntax and typing rules £, we
derive typing rules for the patch languages P(L), and we can then type the patch.
Our motto is:

A well-typed patch is the guarantee that it transforms a well-typed
program into a well-typed program.

In this sense, it is closely related to incremental typing: if a modification has
been made on a program, it is expressible by a patch. To ensure that it will result in
a valid program, it suffices to type the patch, and not the whole resulting program.

Moreover, our approach is meant to be totally formal, so that we can prove
not only validity of our transformations, but also the completeness of our patch
language and other properties. For this, we place ourselves in a constructive,
higher-order metalanguage, namely the Calculus of Inductive Constructions (CIC),
in which we will formalize in turn:

20 2. SEMANTIC PATCHES

1. The object language L of our choice
2. Its metatheory
3. The patch language P(L), parameterized by L.

4. Tts metatheory

2.3 Related work

Both the study of metatheorical properties as proof transformations and of change
impact in structured documents (e.g. proofs, programs) is not a new subject.

The Twelf project (Pfenning and Schiirmann [1999]) is an implementation of the
Logical Framework (LF, Harper et al. [1993]). It is a logic programming language
able to represent logics or programming languages, and embeds an inductive
metatheorem prover able to construct transformations of the II¥ form. It was used
in Anderson [1993] to devise transformations of proofs in order to extract efficient
programs.

The problems of managing a formal mathematical library have been dealt
with in various proof assistant and mathematical repositories. The HELM project
(Asperti et al. [2000], Asperti et al. [2006]) was an attempt to create a large library
of mathematics, importing Coq’s developments into a searchable and browsable
database. Most ideas from this project were imported into the Matita proof
assistants (Asperti and Tassi [2007]), especially a mechanism of invalidation and
regeneration to ensure the global consistency of its library w.r.t changes, with
granularity the whole definitions or proofs and their dependencies. The MBase
project (Kohlhase and Franke [2001]) attempts at creating a web-based, distributed
mathematical knowledge database putting forward the idea of development graph
(Hutter [2000], Autexier et al. [2000]) to manage changes in the database, allowing
semantic-based retrieval and object-level dependency management.

This idea, generalized over structured, semi-formal documents gave birth to
locutor (Miiller and Kohlhase [2008]), a fine-grained extension of the svn version
control system for XML documents, embedding ontology-driven, user-defined
semantic knowledge which allows to go across the filesystem border. It embeds
a diff algorithm, operating on the source text modulo some equality theory to
quotient the syntax. On the same line of work, we should mention the Coccinelle
tool (Padioleau et al. [2008]). It is an evolution over textual patches, specialized
on the C language, allowing more flexibility in the matching process, and was
developed to deal with the problem of collateral evolutions in the Linux kernel.
It embeds a declarative language for matching and transforming C source code,
operating on text modulo defined isomorphisms.

2.4 Patches as metatheorem composition 21

Our approach to the “impact of changes” problem seems novel on several aspects:
first, it applies uniformly on proofs and programming languages by virtue of the
Curry-Howard isomorphism, and because we operate at the AST level. Secondly,
by taking types as a witnesses for the evolution of a development, we refine the
usual, dependency-based approach for a finer granularity. Thirdly, the formality of
our approach ensures not only a maximal trust in the system, but also the ability
to “meta-reason” on the defined language.

In the following, we will give preliminary hints on the construction of such a
system, and how it could be useful to supersede not only textual diffs and version
control systems, but also other paradigms for modular programming and go towards
an eased mathematical discovery process with the help of proof assistants.

2.4 Patches as metatheorem composition

The approach we propose is the following: to transform a program into another
and preserve well-typing, we need to transform accordingly the typing derivation
of the source program into a valid derivation for the target program. On one hand,
these transformations, if performed by hand, are very error-prone: the theory of the
object language may be tricky and side conditions are frequently omitted in informal
presentations. On the other hand, there is a wealth of formalization techniques of
programming languages in the literature, and numerous implementations in proof
assistants. Theoretical results on the object language are called metatheorems; if
these metatheorems are proved in a constructive formalism, like the one of the proof
assistants Coq or Matita, they constitute algorithms of program transformation.
Then we just have to choose an adequate, “complete” set among those. Take the
simply typed A-calculus (STLC) for instance. Examples of metatheorems are:

e app : from two terms ¢ and u, we can always form the application tu. This
is a purely syntactical constructor of the object language, promoted as a
metatheorem;

o typapp:if'+t: A— Band ' wu: A then I' - tu: B. It is part of the
typing definition of the language, and its proof constitutes a transformation
building an application node at the root of a program;

e inv_app : if I' - tu : B then there is a type A such that ' ¢: A — B and
I' Hwu: A. Its proof is a transformation decomposing an application into its
two subprograms: the function and its argument;

e weaken : if 'H¢: A and x is not free in ¢ then I', x : B+t : A. Its proof has
no effect on the program itself, but enlarges the context in which it is typed.

22 2. SEMANTIC PATCHES

e strengthen : if ',z : BFt: A and x is not freein ¢t then I' ¢ : A.

Considering a formalization working directly on the abstract syntax tree of the
programming language (named, possibly implicitly typed...), our patch language
is formed on the composition of a given, carefully chosen set of metatheorems.

2.4.1 Definitions

Transformers We consider only a subset of the possible metatheorems, those of
the following form. A patch variable is an element z,y, ... taken in a countable,
infinite set X'. An atom is either a syntactic category of the object language, or a
meta property we want to reason on, i.e. for STLC:

A,B :=var | term | env | type
| deriv of (X x X x X)
| variable of (X x & x X)

A judgement j can be of two kinds: x is an atom A, or = has form T(xy, ..., x,),
where T is a transformer.

ok =z Alx=T(x,...,2,)

Now a transformer T corresponds to a metatheorem in IIY form, with added
definitional constraints. The statement of the metatheorem is “reified” into a
syntactical signature of the form:

T o giyeeisgn— k1, oo kb

The semantics of these signature is: all tuples on the left of the arrow are
arguments, all tuples on the right are results. Arguments of kind = : A are
interpreted as bare arguments to the transformer, arguments of kind = = T(&)
as constraining arguments: the actual argument supplied must be the result of
applying T to Z. Dually, results of kind x : A are bare results of unknown form,
whereas results of kind = = T(Z) are results ensured to be constructed from the
application of T.

Example 2. Here are the signatures of some of the metatheorems given above:

2.4 Patches as metatheorem composition 23

but we can also imagine higher-level transformers:
cps = (t @ term) — (w : term)
: (A< type) — (B : type)
typ_cps :: (I' : env)(¢ : term)(A : type)(d : deriv(T', ¢, A)) —
(t" = cps(t))(A" = aa_trans(A))(d : deriv(T',#', A"))

aa_trans :

Patches Given a set of transformers > and their signatures, a patch A is a
sequence of variable assignment constructed from the application of a transformer
T; € ¥ to bound variables, much like a let construct:
A =2 =Ti(ih); ..
fn - Tn (gn)

Here, all Z; are bound in subsequent assignments. A repository is a patch with
no free variable. A patch therefore represents the evolution of a set of atoms: the
free variables represent what the patch expects as input, all bound variables the
newly constructed objects. A repository represents the history of modification of a
program, starting from ground up. Each variable has an implicit type, taken into
the set of atoms.

We now describe informally a typing discipline for the patches: a transformer
should be applied to exactly its number and type of arguments, and bind exactly
its number of results, which take their type from the signature. Results of kind
x = T(y) are to be interpreted as additional assignments specifying the structure
of the variable bound. A transformer with an argument of kind x = T(%) should
be applied to a variable having exactly been created by the definiens T(%): same
transformer name T, same variable names .

As we said earlier, a well-typed repository (in the way we just hinted) describes
well-typed changes of its objects, for examples programs and derivations. An
important property of this typing discipline is its independence w.r.t the metatheo-
rems associated to the transformers in 3. All the typing process is done entirely
syntactically, without having to peak into the semantics of transformers. This
allows the patch language to be only parametric on .

Interpretation The same way we reified our metatheorem’s types into a syntax
(the transformers) to obtain the patch language, we can do the opposite transfor-
mation, i.e. interpret a patch or a repository A into an object of the language.
This is done the obvious way, by following the definitions in A and interpreting
transformers by their associated metatheorem:

[z]a = A(z)
[T&)] =T[4

24 2. SEMANTIC PATCHES

The following result ensures that our motto (subsection 2.2) is correct:

Theorem 1 (Soundness). If A is well-typed and d : deriv(T',t, A) € A, then [d]a
is a derivation of [I']a F [t]a : [A]a

2.4.2 Examples

We make a pause here and carry on a simple example of repository construction,
assuming the object language to be the simply typed A-calculus. The transformers
involved are the following:

int :: type
string :: string — var

var :: var — term

nil :: env
cons :: (z : var)(A : type)(T" : env) — env
init :: (I" - env)(x : var)(t = var(x))(A : type)
(v : variable(I', z, A)) — (d : deriv(T', ¢, A))
zero :: (I': env)(x : var)(A : type)(I" = cons(T', z, A)) —
(v : variable(T", z, A))
succ :: (I': env)(z y : var)(A B : type)(v : variable(T', z, A))
(I'" = cons(T',y, B)) — (v : variable(I", z, A))
typ_lam :: (I" : env)(x : var)(A B : type)(t : term)
("= cons(x A, 1)) (d : deriv(IV, ¢, B)) —
(t' =lam(t,z, A))(C = arrow(A, B))(d' : deriv(T',t', C))
typ-app == (I': env)(t u : term)(A B : type)(C = arrow(A, B))
(dy : deriv(I', ¢, C))(dy : deriv(I', u, A)) — (d3 : deriv(I", v, B))
weak :: (I : env)(z : var)(A B : type)(t : term)(I” = cons(T', z, A))
(dy : deriv(T',t, B)) — (dy : deriv(I”,t, B))

Example 3. From the empty repository, we build a derivation for X™x.x by

2.5 Directions 25

constructing the repository:

—_

I' = nil
A=int
x = string("x")

() [\)
NN NSNS NI NN NI

oo

-~ W

to = var(z)
[V = cons(T', z, A)
Vo = zero(T', z, A, TV)
Do = init(T, x, tg, A, Vp)
(t1,C, Dy) = typlam(T, z, A, A, t5, ", Dy)
The last variable, Dy is of type deriv(I',t1,C"). By unfolding the definitions and

interpreting back the transformers, this expression becomes = X"™x.x 1 int — int
which is what is expected.

~N

In this example, we didn’t use anything more than the transformers already
provided by the language construction, so this was just a simple derivation. By now
it should be clear that we can already build whatever derivation we need: we just
reified the object language into the patch language by means of its constructors.

Example 4. Suppose now that we want to transform our program Dy into a
program A\x™ fint=int - £ We need to transform the derivations as well. We add
the following to our previous repository:

f = string("£") (9)
ty = var(f) 10)
I = cons(I', f, C))
Vi = zero(I', f,C, T") 12)

(

(1

(
Dy = init(T”, f,ts, C, V1) (13)

(

(

(

—_

W

D3 = weak(I", f,C, A, to,T", Dy) 14)
(ts, Dy) = typ-app(I"”, t2, t0, A, A, C, Dy, Ds) 15)
(t4, Ds) = typlam(I”, f,C, A, Dy) 16)
(t5, Dg) = typ_lam(T', z, A, D, Ds) (17)

The resulting objects ts and Dg are respectively interpreted back as the term
gt fint=int foand its derivation b Az fitTmt foint — (int — int) — int.

2.5 Directions

This formalization of proof/program transformations is a simple, yet powerful idea,
which opens numerous perspectives. The remaining points of this sections will be
directions for further investigations, not definitive results per se.

26 2. SEMANTIC PATCHES

A basis for transformers In order to be able to represent any transformation
on the object language £, we need to specify the set of metatheorems that we choose
to promote as transformers. Let’s try to identify a minimal set of transformers
able to represent all transformations, a basis so to speak for the construction of
the patch language.

One approach would be to identify, with the help of justified examples, a set of
common transformations on £, as they are used in practice when programming in
L. We would then need to prove that they are complete w.r.t all possible trans-
formations (more on completeness later). For a common, functional programming
language, we can imagine the following transformations:

e Rename a function or an argument, and all its subsequent occurrences in
their scope

e Add an argument to a function, and add a default parameter to all its calls
e Replace a name by another name of the same type

e add a constructor to a type declaration, adding a branch to all itsmatch. . .with
constructs

We prefer a more low-level, syntactical approach based on the tree representa-
tion of all objects, both syntactical and of typing: we promote as transformers all
operations of construction and destruction on these trees, namely the constructors
and destructors of all syntactical objects, and the typing rules and their inversion.
Both these categories of operations manipulate directly the tree structures (in-
sert/delete a node) and provide a unifying way to describe transformations. This
way, we are not only guaranteed to be complete, but also to help the design of an
important piece of the architecture of our system that what we will introduce later:
the diff algorithm.

Maximal sharing and completeness Variables assignments by transformer
application is a simple way to serve two different purposes. The first is to implement
a dependent, multi-hypothesis, multi-conclusion logic if we see transformers as
logical connectives. The second is to name all intermediate construction steps of
all objects, to allow free non-linear reuse of previously constructed object so as to
maximize sharing between objects in a repository. This is the memoizing function
of variable assignments, and it is the way we do incremental typing.

Maximal sharing of constructed object in a repository is a wanted property.
Not only does it ensures that we save the most work, which is simply an efficiency
concern, but it also ensures that we can address objects by their variables: It states

2.5 Directions 27

Definition 1 (Maximal sharing). A patch A has maximal sharing if every object is
assigned to a patch variable only once, namely that for all x,y € A, [z]a # [y]a-

Knowing this, what is completeness in our system? A first, trivially true and
not very interesting statement is the following:

Theorem 2 (Dummy completeness). All valid transformation from A to a program
p and its derivation = p : A are expressible as a program in P(L).

Proof. Since our patch language contains all typing rules, we just have to reconstruct
the derivation of - p : A entirely (without using A in any ways). O

Obviously, this notion of completeness is not the one intended, as we want to
maximally reuse previous results from A. It suggests another notion of completeness,
that we still to formalize and prove:

Conjecture 1 (Completeness). All valid transformation from A to a program p
and its derivation - p : A are expressible as a program in P(L) with mazimal
sharing.

Bootstrapping the system We thus have a method, which can be automated,
to generate from an object language £ and its typing rules, a patch language
P(L) that, we saw, is also typed. Then nothing prevents us from reapplying the
functor P to the resulting object. What do we obtain? Following what we just
said, P(P(L)) is a language describing repository transformations. For example, it
should be able to describe the application of patches at the end of a repository, the
way we implicitly did in our example 4.

Can this transformation help us describe what would be the core of a version
control system? To answer this, we would need to describe all primitive operation
of these systems (application, merge, commutation of patches. ..), and encode them
as programs into the language. In particular, we should try carefully to define a
certain notion of concurrency: what are patches that can be applied concurrently,
what are those that need a special sequentiality? Many interesting, open questions
concerning this bootstrapping arise. Here are some of them:

e What metatheorem can we prove about the language P(L)
e Which of them shall we choose as transformers for P(P(L))?
e Do they depend on the object language L7

e What can we say about the “free” language VX, P(X)

28 2. SEMANTIC PATCHES

A diff algorithm The user of such a system surely does not want to write by
hand what we wrote in our previous example. It is both very verbose, as it shows
and names all intermediate constructs, and not useful as the construction of a
typing derivation is usually not his responsibility but the work of the type inference
algorithm. Moreover, one does not want to change as drastically their habits as not
to write programs/proofs anymore, but only patches applied to previous versions
of its project.

Therefore, an interesting line of work would be to devise an algorithm for
computing the diff between a repository and a file. It would take a program and
return the patch from the current repository to that program. This patch could
be typed afterwards, to guarantee that the program given was well-typed with
minimum effort.

If we see the patch language as a dependent, multi-hypothesis, multi-conclusion
logic, the work of searching for a resembles proof-search as in section 1. Indeed,
starting from a repository A and having written the target program t : A, we are
looking for a composition of transformers © (viewed as logical constants) realizing:

© : A— (z=t)(d=deriv(l'p,t,A))

(the actual logic in which this proof search is conducted still need to be specified
formally).

But we have to be careful in this process, not to redo previous searches, i.e.
reusing maximally the objects of A. This is usually absent from traditional proof
search, in which the proof accounts only for its existence. Recall that we chose as
transformers the exact set of insert/delete operation on the derivation tree built.
Our process in this sense resembles much more a tree edit distance algorithm: the
best “proof” we can find is the one minimizing the distance between (one of) the
trees already built in A, and the new program we are willing to commit to A. Of
course, these techniques will have to be adapted to the case of trees with binders.

This algorithmic search is a challenging direction as it needs to be very efficient,
to be transparent to the user and not make us loose the time we gained by typing
incrementally. Moreover, the dual view of this process as algorithmic content of
proofs in automated proof search seems a novel approach.

Functors as first-class patches Describing transformation of proofs/programs
seems not only interesting to implement a type-safe version control system as we
hinted above, but can be useful to encode other mechanisms commonly used in
proof development and programming, like modules.

Modules were designed as a tool for generic programming, and was integrated in
many functional programming languages, its archetype being SML. One implements
a given module (a set of functions and values), and give it a signature, i.e. the

2.5 Directions 29

bare specification of its exported objects. Then, functors are second-class functions,
mapping a module of a certain signature to another module. These functors can
be applied, resulting in a new module.

Given a language including modules but not functors, we conjecture that we
can represent functors as patches in the patch language. Applying a functor would
be the operation of applying the patch in a given place in the repository.

Consider the following, toy language for libraries:

Ar=a|A— A to=x | Axt|tt
D:={x:A;D}| - d:letez=td]| -
N Cons
1L 'Ft:A T,z:Ard=D
'F.-=- I'Fletz=t;d= {z:A; D}
INIT LAMBDA Aprp
(x:A)el iz, A-t: B 'Ft:A—B FFu:A
'Fx: A 'FXxt:A— B 'Ftu:B

As opposed to the STLC, this language does not represents programs but
libraries of programs (simple modules), having an implementation (let x = ¢; let y =
w; ...) and a signature ({z: 4; y: B; ... }).

A functor in this language can be encoded as a patch, taking as input (i.e.
having as free variable) a declaration d of type the signature D expected, from
which it constructs a typing environment I' and a new library, well-typed in I'.
This way, we encoded functors as transformation operations on modules and we
provided a unified approach to them. Although this approach would require to be
formaized more carefully, we can already raise an interesting question besides it: in
the second-order language (P(L)) we encoded functors, but we know that we can
iterate this process ad infinitum. Can we then represent higher-order functors, like
functors taking functors as arguments, in P(...(P(L))...)?

User interaction Along with being a theoretical study on the impact of trans-
formations in proofs and programs, we believe that some practical application
could already come out, namely a simple, linear version control system. We can
already imagine the kind of user interaction this tool would allow for the editing of
developments: first of all, liberated from the separate compilation paradigm, we
don’t edit whole files anymore, but functions and values. For example, a user could
ask:

> edit Set.add

30 2. SEMANTIC PATCHES

which would spawn a text editor with this function displayed (the actual text
being generated by pretty-printing the associated term sub-object of the current
program). He then edit the function and save the file. At this point, a patch
is generated by the diff algorithm, possibly not well-typed. Then the patch is
temporarily committed (added to the repository at the current point), and its
type-checking begins. If it type-checks correctly, the patch is definitively added and
the system waits for a new user interaction. If it doesn’t type-checks, i.e. if there
is a type error either in the edited function or in the subsequent portion, then the
errors are displayed (possibly with additional context), and the user is asked how
to solve them. This is done either by hand, or by calling an appropriate automatic
strategy, defined by a high-level transformer. Examples of high-level automatic
resolution strategies are:

a-conversion If we changed the name of an element of the context, we can decide
to automatically rename all its occurrences;

default argument If we added an argument to a function, we can add a default
parameter to all its occurrences;

weakening If the environment has been enlarged at some point, weakening allows
us to modify any subsequent type derivation with the new environment;

strengthening If a name is not used in any part of the program, we can safely
delete it from the environment;

On the long term, we see other directions on this project. They include:

e The use of special representations of the terms of the language using forward-
pointers from binders to their occurrences,

e The definition in the language of patches of the higher-level transformers we
described above,

e Investigate the relationship with the version control tool git, as the structure
of our repository resembles the object database and its content-addressable
namespace; possibly import ideas from it,

e Approximation of type systems: when complex type systems are at stake (like
dependent type theory), we could possibly devise a conservative approximation
and use the real typing algorithm as a black box for retyping parts of the
constructions, and still remain more efficient than typing the whole program,

REFERENCES 31

e Finally, we focused here on the semantic property of typing, but we could
experiment other properties, like the preservation of operational semantics.
The applications are numerous for programming (certified refactoring for
example) but it seems more difficult because the base property is in the
general case undecidable.

References

P. Anderson. Program Derivation by Proof Transformation. PhD thesis, CMU,
1993. 20

J. Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2(3):297, 1992. 4, 13

A. Asperti and E. Tassi. Higher order proof reconstruction from paramodulation-
based refutations: The unit equality case. Lecture Notes in Computer Science,
4573:146, 2007. 20

A. Asperti and E. Tassi. Paramodulation as a logical glue. Submitted manuscript,
2010. 5, 6, 7, 16

A. Asperti, L. Padovani, C. Sacerdoti Coen, and I. Schena. Content-centric logical
environments. Short presentation at LICS, 2000. 20

A. Asperti, F. Guidi, C.S. Coen, E. Tassi, and S. Zacchiroli. A content based
mathematical search engine: Whelp. Lecture Notes in Computer Science, 3839:
17-32, 2006. 20

A. Asperti, C.S. Coen, E. Tassi, and S. Zacchiroli. Crafting a proof assistant.
Lecture Notes in Computer Science, 4502:18, 2007. i, 1

A. Asperti, H. Geuvers, and R. Natarajan. Social processes, program verification
and all that. Mathematical Structures in Computer Science, 19(05):877-896,
2009. i

S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an evolutionary formal
software-development using CASL. Lecture Notes In Computer Science, pages
73-88, 2000. 20

L. Bachmair and H. Ganzinger. Resolution theorem proving. Handbook of automated
reasoning, 1:19-99, 2001. 4

G. Barthe and O Pons. Type isomorphisms and proof reuse in dependent type
theory. FoSSaCS, 2001. 16

32 REFERENCES

B. Beckert, R. H
"ahnle, P. Oel, and M. Sulzmann. The tableau-based theorem prover 3TAP,
version 4.0. Lecture Notes in Computer Science, pages 303-307, 1996. 4

P. Benacerraf and H. Putnam. Philosophy of mathematics. Cambridge University
Press, 1983.

R.S. Boyer and J.S. Moore. A theorem prover for a computational logic. In 10th
Conference on Automated Deduction, volume 449. Springer, 1988. i

L.E.J. Brouwer. Intuitionistic reflections on formalism. originally published in,
pages 490-492, 1927.

A. Bundy. The automation of proof by mathematical induction. Handbook of
Automated Reasoning, 1:845-911, 2001. 4

A. Bundy, A. Stevens, F. Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic
for guiding inductive proofs. Artificial Intelligence, 62(2):185-253, 1993. 4

F. Cardone, J.R. Hindley, and N. MRRS. History of lambda-calculus and combina-
tory logic. Handbook of the History of Logic, 5, 2006.

A. Church. A formulation of the simple theory of types. Journal of symbolic logic,
pages 56-68, 1940.

H. Comon. Inductionless induction. Handbook of Automated Reasoning, 1:913-962,
2001. 4

NG De Bruijn. The mathematical language AUTOMATH, its usage and some of
its extensions. In Symposium on automatic demonstration, volume 125, pages
29-61, 1970. i

David Delahaye. Conception de langages pour décrire les preuves et les automati-
sations dans les outils d’aide a la preuve: une étude dans le cadre du systéme
Coq. PhD thesis, Université Pierre et Marie Curie (Paris 6), December 2001. 13

R. Di Cosmo. Isomorphisms of types: from X\-calculus to information retrieval and
language design. Birkhauser, 1995. 16

G. Dowek. Les métamorphoses du calcul. Le Pommier, 2007. ii

J.Y. Girard. Interprétation fonctionnelle et élimination des coupures de
I’arithmétique d’ordre supérieur. These d’état, Université Paris VII, 1972.

J.Y. Girard. Linear logic: its syntax and semantics. Advances in linear logic, 222:
1-42, 1995. 13

REFERENCES 33

G. Gonthier and B. Werner. Mathematical components manifesto. http://www.
msr-inria.inria.fr/Projects/math-components/manifesto, n.d. 17

Georges Gonthier and Assia Mahboubi. A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, INRIA, 2008. i

P. Graf. Substitution tree indexing. Lecture Notes in Computer Science, 914:
117-131, 1995. 14

R. Hahnle. Tableaux and related methods. Handbook of Automated Reasoning, 1:
101-176, 2001. 4

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143-184, 1993. 20

A. Heyting. Intuitionism: an introduction. North-Holland Pub. Co., 1971.

W.A. Howard. The formulae-as-types notion of construction. To HB Curry: essays
on combinatory logic, lambda calculus and formalism, pages 479-490, 1980.

J. Hurd. Integrating gandalf and hol. TECHNICAL REPORT-UNIVERSITY OF
CAMBRIDGE COMPUTER LABORATORY, 1999. 5

J. Hurd. First-order proof tactics in higher-order logic theorem provers. Design and
Application of Strategies/Tactics in Higher Order Logics, number NASA /CP-
2003-212448 in NASA Technical Reports, pages 56—68, 2003. 5

D. Hutter. Management of change in structured verification. In Proceedings 15th
IEEFE International Conference on Automated Software Engineering, pages 23—34.
Citeseer, 2000. 20

O. Kiselyov, C. Shan, D.P. Friedman, and A. Sabry. Backtracking, interleaving,
and terminating monad transformers:(functional pearl). ACM SIGPLAN Notices,
40(9):203, 2005. 14

M. Kohlhase and A. Franke. MBase: Representing knowledge and context for the
integration of mathematical software systems. Journal of Symbolic Computation,
32(4):365-402, 2001. 20

I. Lakatos. Proofs and refutations (IV). The British Journal for the Philosophy of
Science, 14(56):296-342, 1964. 18

Stéphane Lengrand. Normalisation € FEquivalence in Proof Theory € Type Theory.
PhD thesis, Université Paris 7 & University of St Andrews, 2006. 10

http://www.msr-inria.inria.fr/Projects/math-components/manifesto
http://www.msr-inria.inria.fr/Projects/math-components/manifesto

34 REFERENCES

P. Martin-Lof. Constructive Mathematics and Computer Programming. Philosoph-
ical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, pages 501-518, 1984.

P. Martin-Lof. On the meanings of the logical constants and the justifications of
the logical laws. Nordic Journal of Philosophical Logic, 1(1):11-60, 1996.

P. Martin-Lof and G. Sambin. Intuitionistic type theory. Bibliopolis Naples, 1984.

W. McCune. Experiments with discrimination-tree indexing and path indexing for
term retrieval. Journal of Automated Reasoning, 9(2):147-167, 1992. 14

S. McLaughlin and F. Pfenning. Efficient Intuitionistic Theorem Proving with the
Polarized Inverse Method. In Proceedings of the 22nd International Conference
on Automated Deduction, page 244. Springer, 2009. 4, 13

J. Meng, C. Quigley, and L.C. Paulson. Automation for interactive proof: First
prototype. Information and Computation, 204(10):1575-1596, 2006. 5

N. Miiller and M. Kohlhase. Fine-Granular Version Control & Redundancy Resolu-
tion. In LWA Conference Proceedings (FGWM), pages 1-8, 2008. 20

R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. Handbook
of automated reasoning, 1:371-443, 2001. 4

Y. Padioleau, J. Lawall, R.R. Hansen, and G. Muller. Documenting and automating
collateral evolutions in Linux device drivers. ACM SIGOPS Operating Systems
Review, 42(4):247-260, 2008. 20

C. Paulin-Mohring. Définitions inductives en théorie des types d’ordre supérieur.
Habilitation d diriger les recherches, Université Claude Bernard Lyon I, 1996. 1

Lawrence C. Paulson. A generic tableau prover and its integration with isabelle. J.

UCS, 5(3):73-87, 1999. 4, 5

F. Pfenning and C. Schiirmann. System description: Twelf — a meta-logical
framework for deductive systems. Lecture Notes in Computer Science, pages
202-206, 1999. 20

B. Pientka. Higher-order substitution tree indexing. Lecture notes in computer
science, pages 377-391, 2003. 14

J.C. Reynolds. Types, abstraction and parametric polymorphism. Information
processing, 83(513-523):1, 1983.

REFERENCES 35

A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. Al
communications, 15(2):91-110, 2002. 4

JA Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM (JACM), 12(1):23-41, 1965. 4

B. Russell. Mathematical logic as based on the theory of types. American journal
of mathematics, 30(3):222-262, 1908.

J. Van Heijenoort. From Frege to Godel: a source book in mathematical logic,
1879-1931. Harvard University Print, 1967.

L. Wos and G. Robinson. Paramodulation and set of support. In IRIA Symposium
on Automatic Demonstration. Springer, 1968. 4

	Automation in proof assistants
	State of the art
	First-order theorem proving
	Proof search in ITP systems

	Issues in ITP automation
	Embedding first-order calculi
	Generic proof search in type theory

	Further directions
	Sequent calculus proof search
	Strategic proof search
	Implementation issues
	Isomorphisms in the CIC

	Semantic patches
	Motivations
	Methodology
	Related work
	Patches as metatheorem composition
	Definitions
	Examples

	Directions

