Efficient and automatic recognition of

mathematical structures in Coq

Matthias Puech

Laboratoire d’'Informatique de I’'Ecole Polytechnique,
dir. Hugo Herbelin

October 31 2008

» High-level tactical language (L¢ac)
» Low-level proof/type language (CIC)

Some tactics relie on mathematical structures

» High-level tactical language (L¢ac)
» Low-level proof/type language (CIC)

Some tactics relie on mathematical structures
Define, Declare

» Define the object

> Let the system know they fulfill some properties

Definition R := [...].

Lemma R_refl : forall A, reflexive R A.
Lemma R_sym : forall A, symmetric R A.
Lemma R_trans : forall A, transitive R A.

Definition R := [...].

Lemma R_refl : forall A, reflexive R A.
Lemma R_sym : forall A, symmetric R A.
Lemma R_trans : forall A, transitive R A.

Add Parametric Relation x1 x2 : (A x1 x2) R
reflexivity proved by R_refl
symmetry proved by R_sym
transitivity proved by R_trans
as R_rel.

Definition R := [...].

Lemma R_refl : forall A, reflexive R A.
Lemma R_sym : forall A, symmetric R A.
Lemma R_trans : forall A, transitive R A.

Add Parametric Relation x1 x2 : (A x1 x2) R
reflexivity proved by R_refl
symmetry proved by R_sym
transitivity proved by R_trans
as R_rel.

Lemma foo : [...].
Proof. tramsitivity y; reflexivity. Qed.

Definition R := [...].
Lemma R_equiv : equivalence R.

Lemma foo : [...].
Proof. tramsitivity y; reflexivity. Qed.

Initial goal

Questions

» Can Coq have a «consciousness» of these structures ?

» Can they be automatically inferred ?

More generally

> A step towards inferring “trivial reasoning steps” ?

Typeclasses

Ad-hoc polymorphism
Overloading function names, depending on the context.

Example
(+) int — int — int = plus_int
(+) : float — float — float = plus float

(+) : string — string — string = concat

Typeclasses

Principle
Relation between :
Classes (specification of the functions to overload)

Instances (actual implementations in different contexts)

» Relation between classes also (inheritance)
» Overloading resolution a la PROLOG

Class Addable (A:Type) :=
(#) : A > A > A

Instance exl1l : Addable nat :=
(#) := Peano.plus.

Instance ex2 : Addable Z :=
(+#) := ZArith.Zplus.

Class Monoid (A:Type) :=
(*) : A -> A ->A;
assoc : forall abec, (a*b) *x c =a *x (b * c);
e : A;
ident_1 : forall a, a * e
ident_r : forall a, e * a

a;
a.

Class [Monoid Al => Group :=
inverse : forall x:A, exists y:A,
X ¥y =y *xXx=e.

Under the hood

First class implementation (almost only syntactic sugar)

Record type
(dependent) Record

Class
Instance

OBl

Overloaded method Field
Parent class inferred argument
Resolution eauto

Under the hood

First class implementation (almost only syntactic sugar)

Class = Record type
Instance —> (dependent) Record
Overloaded method — Field
Parent class —> inferred argument
Resolution = eauto
—_—

Structure recognition Instance search

Under the hood

First class implementation (almost only syntactic sugar)

Class Record type
Instance (dependent) Record
Overloaded method Field
Parent class inferred argument
Resolution eauto

Instance search
Proof search

Structure recognition

RN

Instance search

Given aclassC = (x; : T1,...,x,: Tp), we're searching for i : C.
Decidable subset of the type system:

e s
FrFa:Tt - T F ty:T,

inst
(inst) [F (ti:T1 ... ty: T

FEt:Vx:T-T; Fox:T F (ti:Ti...(tix): Tioo.th: Th)
FE VT (ti:Ti. . (tix): Tio..tg: Tp)

Overview of the algorithm

Combinatorial work
We are looking for all possible proofs of C

Textual recognition

» V x, _ x x: reflexivity lemma = instance of

Class Reflexive A (R:relation A) :=
reflexive : forall x, R x x

»Vabec, _ (Lab) c=_a(_bc): associativity
lemmay. Maybe a monoid 7

= Filtering on types

Usage example

Welcome to Coq trunk (11262)

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].
R is defined

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].
R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.
R_refl is defined
new instance Symmetric_1 : Symmetric R

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].
R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.
R_refl is defined
new instance Symmetric_1 : Symmetric R

Coq < Lemma R_trans : transitive R. auto. Qed.
R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].
R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.
R_refl is defined
new instance Symmetric_1 : Symmetric R

Coq < Lemma R_trans : transitive R. auto. Qed.
R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq < Lemma R_refl : reflexive R. auto. Qed.
R_refl is defined

new instance Reflexive_1 : Reflexive R

new instance Equivalence_1 : Equivalence R
new instance Setoid_1 : Setoid A R

Discrimination nets

An efficient structure for one-to-many filtering.

The problem

Given an algebra of terms A, | have :
» A pattern p
> A (big) set of terms S

Which terms in S filter the pattern p ?

Discrimination nets

An efficient structure for one-to-many filtering.

The problem

Given an algebra of terms A, | have :
» A pattern p
> A (big) set of terms S

Which terms in S filter the pattern p ?

Discrimination nets

= A collection datastructure, with pattern searching.

» To a datatype, we associate a structure where each-node
represents a list of sub-terms.

Discrimination nets

= A collection datastructure, with pattern searching.

» To a datatype, we associate a structure where each-node
represents a list of sub-terms.

Example

type t =
| Var of int
| Lam of t
| App of t * t

Discrimination nets

= A collection datastructure, with pattern searching.

» To a datatype, we associate a structure where each-node
represents a list of sub-terms.

Example

type t =
| Var of int
| Lam of t list
| App of t list * t list

Discrimination nets

= A collection datastructure, with pattern searching.

» To a datatype, we associate a structure where each-node
represents a list of sub-terms.
» At the leaf of the structure, we store unique identifiers

Example

type t =
| Var of int
| Lam of t list
| App of t list * t list

Discrimination nets

= A collection datastructure, with pattern searching.

» To a datatype, we associate a structure where each-node
represents a list of sub-terms.
» At the leaf of the structure, we store unique identifiers

Example

type t =
| Var of int * ident list
| Lam of t list
| App of t list * t list

» To search for a term is to search for a path in the
discrimination net.

» To search for a term is to search for a path in the
discrimination net.

Example
This net :
[Lam; App]
[Var 1; Lam] [Lam] [Lam]

a]

[Var 1] [Var 1] [Var 1]

contains terms :

» To search for a term is to search for a path in the
discrimination net.

Example
This net :
[Lam; App]
[Var 1; Lam] [Lam] [Lam]

a]

[Var 1] [Var 1] [Var 1]

Lam(Var 1)

contains terms :

» To search for a term is to search for a path in the
discrimination net.

Example
This net :
[Lam; App]
[Var 1; Lam] [Lam] [Lam]

a]

[Var 1] [Var 1] [Var 1]

Lam(Var 1)
contains terms : Lam(Lam(Var 1))

» To search for a term is to search for a path in the
discrimination net.

Example
This net :
[Lam; App]
[Var 1; Lam] [Lam] [Lam]

a]

[Var 1] [Var 1] [Var 1]

Lam(Var 1)
contains terms : Lam(Lam(Var 1))

App(Lam(Var 1),Lam(Var 1))

» To search for a term is to search for a path in the
discrimination net.

Example
This net :
[Lam; App]
[Var 1; Lam] [Lam] [Lam]

a]

[Var 1] [Var 1] [Var 1]

Lam(Var 1)
contains terms : Lam(Lam(Var 1))

App(Lam(Var 1),Lam(Var 1))
= O(|TI)

» To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.

Example
[Lam; App]
[Var 1; Lam] [Lam] [Lam; Var 1]

o | | [

[Var 1] [Var 1] [Var 1]

» To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.

Example
[Lam; App]
/ N
[Var 1; Lam] [Lam] [Lam; Var 1]
| .

[Var 1] [Var 1] [Var 1]

App(X,Lam(Y)) 7

» To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.

Example
[Lam; App]
/ N
[Var 1; Lam] [Lam] [Lam; Var 1]
| .

[Var 1] [Var 1] [Var 1]

App(X,Lam(Y)) 7

= N{[3][4]; 3]} = [3]

Current Implementation

type t type dn
Functor - val map N val add
val fold val find all
val compare val fold pattern

Applied to Coq’s constr

Current Implementation

type t type dn
Functor - val map N val add
val fold val find all
val compare val fold pattern

Applied to Coq’s constr
Primitives :
> add

» find_all
» fold_pattern

Current Implementation

type t type dn
Functor - val map N val add
val fold val find all
val compare val fold pattern

Applied to Coq’s constr
Primitives :

> add

» find_all

» fold_pattern

Allow to code many typical search problems. ..

Current Implementation

Head search

let search_concl pat =
possibly_under prod_pat
(search_pat pat) all_types

Search for equalities

let search_eq_concl pat =
possibly_under prod_pat
(under (eq_pat) (search_pat pat)
) all_types

Discrimination nets

Multiple variations

» Term/Pattern or Pattern/Term
» Full unification

» Filtering modulo 4, 5...

Numerous applications

» Rewriting systems
» Efficient proof search (Hints)

» Interactive search tools

To go further

» Use discrimination nets pervasively
» Relax the textual recognition (isomorphisms of types)

» Unify with all the other proof search frameworks

To go further

» Use discrimination nets pervasively
» Relax the textual recognition (isomorphisms of types)

» Unify with all the other proof search frameworks

But also,

» Typeclasses were just a pretext, reify all meta-objects to gain
control.

