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Define, Declare

» Define the object

> Let the system know they fulfill some properties
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Definition R := [...].
Lemma R_equiv : equivalence R.

Lemma foo : [...].
Proof. tramsitivity y; reflexivity. Qed.



Initial goal

Questions

» Can Coq have a «consciousness» of these structures ?

» Can they be automatically inferred ?

More generally

> A step towards inferring “trivial reasoning steps” ?



Typeclasses

Ad-hoc polymorphism
Overloading function names, depending on the context.

Example
(+) int — int — int = plus_int
(+) :  float — float — float = plus float

(+) : string — string — string = concat



Typeclasses

Principle
Relation between :
Classes (specification of the functions to overload)

Instances (actual implementations in different contexts)

» Relation between classes also (inheritance)
» Overloading resolution a la PROLOG



Class Addable (A:Type) :=
(#) : A > A > A

Instance exl1l : Addable nat :=
(#) := Peano.plus.

Instance ex2 : Addable Z :=
(+#) := ZArith.Zplus.



Class Monoid (A:Type) :=
(*) : A -> A ->A;
assoc : forall abec, (a*b) *x c =a *x (b * c);
e : A;
ident_1 : forall a, a * e
ident_r : forall a, e * a

a;
a.

Class [Monoid Al => Group :=
inverse : forall x:A, exists y:A,
X ¥y =y *xXx=e.
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Under the hood

First class implementation (almost only syntactic sugar)

Class Record type
Instance (dependent) Record
Overloaded method Field
Parent class inferred argument
Resolution eauto

Instance search
Proof search

Structure recognition

RN



Instance search

Given aclassC = (x; : T1,...,x,: Tp), we're searching for i : C.
Decidable subset of the type system:

e s
FrFa:Tt - T F ty:T,

inst
(inst) [ F (ti:T1 ... ty: T

FEt:Vx:T-T; Fox:T F (ti:Ti...(tix): Tioo.th: Th)
FE VT (ti:Ti. . (tix): Tio..tg: Tp)




Overview of the algorithm

Combinatorial work
We are looking for all possible proofs of C

Textual recognition

» V x, _ x x: reflexivity lemma = instance of

Class Reflexive A (R:relation A) :=
reflexive : forall x, R x x

»Vabec, _ (Lab) c=_a(_bc): associativity
lemmay. Maybe a monoid 7

= Filtering on types
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Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].
R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.
R_refl is defined
new instance Symmetric_1 : Symmetric R

Coq < Lemma R_trans : transitive R. auto. Qed.
R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq < Lemma R_refl : reflexive R. auto. Qed.
R_refl is defined

new instance Reflexive_1 : Reflexive R

new instance Equivalence_1 : Equivalence R
new instance Setoid_1 : Setoid A R
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An efficient structure for one-to-many filtering.

The problem

Given an algebra of terms A, | have :
» A pattern p
> A (big) set of terms S

Which terms in S filter the pattern p ?
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Discrimination nets

= A collection datastructure, with pattern searching.

» To a datatype, we associate a structure where each-node
represents a list of sub-terms.
» At the leaf of the structure, we store unique identifiers

Example

type t =
| Var of int * ident list
| Lam of t list
| App of t list * t list



» To search for a term is to search for a path in the
discrimination net.
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» To search for a term is to search for a path in the
discrimination net.

Example
This net :
[Lam; App]
[Var 1; Lam] [Lam] [Lam]

a ]

[Var 1] [Var 1] [Var 1]

Lam(Var 1)
contains terms : Lam(Lam(Var 1))

App(Lam(Var 1),Lam(Var 1))
= O(|TI)



» To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.
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» To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.

Example
[Lam; App]
/ N
[Var 1; Lam] [Lam] [Lam; Var 1]
| .

[Var 1] [Var 1] [Var 1]

App(X,Lam(Y)) 7

= N{[3][4]; 3]} = [3]
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Current Implementation

type t type dn
Functor - val map N val add
val fold val find all
val compare val fold pattern

Applied to Coq’s constr
Primitives :

> add

» find_all

» fold_pattern

Allow to code many typical search problems. ..



Current Implementation

Head search

let search_concl pat =
possibly_under prod_pat
(search_pat pat) all_types

Search for equalities

let search_eq_concl pat =
possibly_under prod_pat
(under (eq_pat) (search_pat pat)
) all_types



Discrimination nets

Multiple variations

» Term/Pattern or Pattern/Term
» Full unification

» Filtering modulo 4, 5...

Numerous applications

» Rewriting systems
» Efficient proof search (Hints)

» Interactive search tools
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» Relax the textual recognition (isomorphisms of types)
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To go further

» Use discrimination nets pervasively
» Relax the textual recognition (isomorphisms of types)

» Unify with all the other proof search frameworks

But also,

» Typeclasses were just a pretext, reify all meta-objects to gain
control.



