
E�cient and automatic recognition of

mathematical structures in Coq

Matthias Puech

Laboratoire d'Informatique de l'Ecole Polytechnique,
dir. Hugo Herbelin

October 31 2008

My view of Coq

I High-level tactical language (Ltac)

I Low-level proof/type language (CIC)

Some tactics relie on mathematical structures

De�ne, Declare

I De�ne the object

I Let the system know they ful�ll some properties

My view of Coq

I High-level tactical language (Ltac)

I Low-level proof/type language (CIC)

Some tactics relie on mathematical structures

De�ne, Declare

I De�ne the object

I Let the system know they ful�ll some properties

Example

Definition R := [...].

Lemma R_refl : forall A, reflexive R A.

Lemma R_sym : forall A, symmetric R A.

Lemma R_trans : forall A, transitive R A.

Add Parametric Relation x1 x2 : (A x1 x2) R

reflexivity proved by R_refl

symmetry proved by R_sym

transitivity proved by R_trans

as R_rel.

Lemma foo : [...].

Proof. transitivity y; reflexivity. Qed.

Example

Definition R := [...].

Lemma R_refl : forall A, reflexive R A.

Lemma R_sym : forall A, symmetric R A.

Lemma R_trans : forall A, transitive R A.

Add Parametric Relation x1 x2 : (A x1 x2) R

reflexivity proved by R_refl

symmetry proved by R_sym

transitivity proved by R_trans

as R_rel.

Lemma foo : [...].

Proof. transitivity y; reflexivity. Qed.

Example

Definition R := [...].

Lemma R_refl : forall A, reflexive R A.

Lemma R_sym : forall A, symmetric R A.

Lemma R_trans : forall A, transitive R A.

Add Parametric Relation x1 x2 : (A x1 x2) R

reflexivity proved by R_refl

symmetry proved by R_sym

transitivity proved by R_trans

as R_rel.

Lemma foo : [...].

Proof. transitivity y; reflexivity. Qed.

Exemple

Definition R := [...].

Lemma R_equiv : equivalence R.

Lemma foo : [...].

Proof. transitivity y; reflexivity. Qed.

Initial goal

Questions

I Can Coq have a �consciousness� of these structures ?

I Can they be automatically inferred ?

More generally

I A step towards inferring �trivial reasoning steps� ?

Typeclasses

Ad-hoc polymorphism

Overloading function names, depending on the context.

Example

(+) : int → int → int = plus_int
(+) : �oat → �oat → �oat = plus_float
(+) : string → string → string = concat

Typeclasses

Principle

Relation between :

Classes (speci�cation of the functions to overload)

Instances (actual implementations in di�erent contexts)

I Relation between classes also (inheritance)

I Overloading resolution à la PROLOG

Example

Class Addable (A:Type) :=

(+) : A -> A -> A.

Instance ex1 : Addable nat :=

(+) := Peano.plus.

Instance ex2 : Addable Z :=

(+) := ZArith.Zplus.

Example

Class Monoid (A:Type) :=

(*) : A -> A -> A;

assoc : forall a b c, (a * b) * c = a * (b * c);

e : A;

ident_l : forall a, a * e = a;

ident_r : forall a, e * a = a.

Class [Monoid A] => Group :=

inverse : forall x:A, exists y:A,

x * y = y * x = e.

Under the hood

First class implementation (almost only syntactic sugar)

Class =⇒ Record type
Instance =⇒ (dependent) Record

Overloaded method =⇒ Field
Parent class =⇒ inferred argument
Resolution =⇒ eauto

Structure recognition =⇒ Instance search
=⇒ Proof search

Under the hood

First class implementation (almost only syntactic sugar)

Class =⇒ Record type
Instance =⇒ (dependent) Record

Overloaded method =⇒ Field
Parent class =⇒ inferred argument
Resolution =⇒ eauto

Structure recognition =⇒ Instance search

=⇒ Proof search

Under the hood

First class implementation (almost only syntactic sugar)

Class =⇒ Record type
Instance =⇒ (dependent) Record

Overloaded method =⇒ Field
Parent class =⇒ inferred argument
Resolution =⇒ eauto

Structure recognition =⇒ Instance search
=⇒ Proof search

Instance search

Given a class C = 〈x1 : T1, . . . , xn : Tn〉, we're searching for i : C .
Decidable subset of the type system:

(var)
Γ, t : T ` t : T

(inst)
Γ ` t1 : T1 · · · Γ ` tn : Tn

Γ ` 〈t1 : T1 . . . tn : Tn〉

Γ ` ti : ∀x : T · Ti Γ, x : T ` 〈 t1 : T1 . . . (ti x) : Ti . . . tn : Tn〉
Γ ` ∀x : T · 〈 t1 : T1 . . . (ti x) : Ti . . . tn : Tn〉

Overview of the algorithm

Combinatorial work
We are looking for all possible proofs of C

Textual recognition

I ∀ x, _ x x : re�exivity lemma ⇒ instance of

Class Reflexive A (R:relation A) :=

reflexive : forall x, R x x

I ∀ a b c, _ (_ a b) c = _ a (_ b c) : associativity
lemmay. Maybe a monoid ?

= Filtering on types

Usage example

Welcome to Coq trunk (11262)

Coq <

Definition R := [...].

R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.

R_refl is defined

new instance Symmetric_1 : Symmetric R

Coq < Lemma R_trans : transitive R. auto. Qed.

R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq < Lemma R_refl : reflexive R. auto. Qed.

R_refl is defined

new instance Reflexive_1 : Reflexive R

new instance Equivalence_1 : Equivalence R

new instance Setoid_1 : Setoid A R

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].

R is defined

Coq <

Lemma R_sym : symmetric R. auto. Qed.

R_refl is defined

new instance Symmetric_1 : Symmetric R

Coq < Lemma R_trans : transitive R. auto. Qed.

R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq < Lemma R_refl : reflexive R. auto. Qed.

R_refl is defined

new instance Reflexive_1 : Reflexive R

new instance Equivalence_1 : Equivalence R

new instance Setoid_1 : Setoid A R

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].

R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.

R_refl is defined

new instance Symmetric_1 : Symmetric R

Coq <

Lemma R_trans : transitive R. auto. Qed.

R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq < Lemma R_refl : reflexive R. auto. Qed.

R_refl is defined

new instance Reflexive_1 : Reflexive R

new instance Equivalence_1 : Equivalence R

new instance Setoid_1 : Setoid A R

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].

R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.

R_refl is defined

new instance Symmetric_1 : Symmetric R

Coq < Lemma R_trans : transitive R. auto. Qed.

R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq <

Lemma R_refl : reflexive R. auto. Qed.

R_refl is defined

new instance Reflexive_1 : Reflexive R

new instance Equivalence_1 : Equivalence R

new instance Setoid_1 : Setoid A R

Coq <

Usage example

Welcome to Coq trunk (11262)

Coq < Definition R := [...].

R is defined

Coq < Lemma R_sym : symmetric R. auto. Qed.

R_refl is defined

new instance Symmetric_1 : Symmetric R

Coq < Lemma R_trans : transitive R. auto. Qed.

R_trans is defined

new instance Transitive_1 : Transitive R

new instance PER_1 : PER R

Coq < Lemma R_refl : reflexive R. auto. Qed.

R_refl is defined

new instance Reflexive_1 : Reflexive R

new instance Equivalence_1 : Equivalence R

new instance Setoid_1 : Setoid A R

Coq <

Discrimination nets

An e�cient structure for one-to-many �ltering.

The problem

Given an algebra of terms Λ, I have :

I A pattern p

I A (big) set of terms S

Which terms in S �lter the pattern p ?

Discrimination nets

An e�cient structure for one-to-many �ltering.

The problem

Given an algebra of terms Λ, I have :

I A pattern p

I A (big) set of terms S

Which terms in S �lter the pattern p ?

Discrimination nets

= A collection datastructure, with pattern searching.

I To a datatype, we associate a structure where each-node
represents a list of sub-terms.

I At the leaf of the structure, we store unique identi�ers

Example

type t =

| Var of int

* ident list

| Lam of t

list

| App of t

list

* t

list

Discrimination nets

= A collection datastructure, with pattern searching.

I To a datatype, we associate a structure where each-node
represents a list of sub-terms.

I At the leaf of the structure, we store unique identi�ers

Example

type t =

| Var of int

* ident list

| Lam of t

list

| App of t

list

* t

list

Discrimination nets

= A collection datastructure, with pattern searching.

I To a datatype, we associate a structure where each-node
represents a list of sub-terms.

I At the leaf of the structure, we store unique identi�ers

Example

type t =

| Var of int

* ident list

| Lam of t list

| App of t list * t list

Discrimination nets

= A collection datastructure, with pattern searching.

I To a datatype, we associate a structure where each-node
represents a list of sub-terms.

I At the leaf of the structure, we store unique identi�ers

Example

type t =

| Var of int

* ident list

| Lam of t list

| App of t list * t list

Discrimination nets

= A collection datastructure, with pattern searching.

I To a datatype, we associate a structure where each-node
represents a list of sub-terms.

I At the leaf of the structure, we store unique identi�ers

Example

type t =

| Var of int * ident list

| Lam of t list

| App of t list * t list

Term Search

I To search for a term is to search for a path in the
discrimination net.

Example

This net :

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam]

[Var 1]

3

[Var 1]

3

[Var 1]

2

contains terms :
1 Lam(Var 1)

2 Lam(Lam(Var 1))

3 App(Lam(Var 1),Lam(Var 1))

=⇒ O(|T |)

Term Search

I To search for a term is to search for a path in the
discrimination net.

Example

This net :

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam]

[Var 1]

3

[Var 1]

3

[Var 1]

2

contains terms :

1 Lam(Var 1)

2 Lam(Lam(Var 1))

3 App(Lam(Var 1),Lam(Var 1))

=⇒ O(|T |)

Term Search

I To search for a term is to search for a path in the
discrimination net.

Example

This net :

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam]

[Var 1]

3

[Var 1]

3

[Var 1]

2

contains terms :
1 Lam(Var 1)

2 Lam(Lam(Var 1))

3 App(Lam(Var 1),Lam(Var 1))

=⇒ O(|T |)

Term Search

I To search for a term is to search for a path in the
discrimination net.

Example

This net :

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam]

[Var 1]

3

[Var 1]

3

[Var 1]

2

contains terms :
1 Lam(Var 1)

2 Lam(Lam(Var 1))

3 App(Lam(Var 1),Lam(Var 1))

=⇒ O(|T |)

Term Search

I To search for a term is to search for a path in the
discrimination net.

Example

This net :

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam]

[Var 1]

3

[Var 1]

3

[Var 1]

2

contains terms :
1 Lam(Var 1)

2 Lam(Lam(Var 1))

3 App(Lam(Var 1),Lam(Var 1))

=⇒ O(|T |)

Term Search

I To search for a term is to search for a path in the
discrimination net.

Example

This net :

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam]

[Var 1]

3

[Var 1]

3

[Var 1]

2

contains terms :
1 Lam(Var 1)

2 Lam(Lam(Var 1))

3 App(Lam(Var 1),Lam(Var 1))

=⇒ O(|T |)

Filtering

I To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.

Example

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam; Var 1]

[Var 1]

3

[Var 1]

3

[Var 1]

2

4

4

App(X,Lam(Y)) ?

=⇒
⋂{

3 4 ; 3
}

= 3

Filtering

I To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.

Example

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam; Var 1]

[Var 1]

3

[Var 1]

3

[Var 1]

2

4

4

App(X,Lam(Y)) ?

=⇒
⋂{

3 4 ; 3
}

= 3

Filtering

I To search for a pattern is to search for a term, stop at the
holes and enumerate terms underneith.

Example

[Lam; App]
��� AA

PPPPP
[Var 1; Lam]

1

[Lam] [Lam; Var 1]

[Var 1]

3

[Var 1]

3

[Var 1]

2

4

4

App(X,Lam(Y)) ?

=⇒
⋂{

3 4 ; 3
}

= 3

Current Implementation

Functor :

type t

val map

val fold

val compare

 −→


type dn

val add

val find_all
val fold_pattern

Applied to Coq's constr

Primitives :

I add

I find_all

I fold_pattern

Allow to code many typical search problems. . .

Current Implementation

Functor :

type t

val map

val fold

val compare

 −→


type dn

val add

val find_all
val fold_pattern

Applied to Coq's constr

Primitives :

I add

I find_all

I fold_pattern

Allow to code many typical search problems. . .

Current Implementation

Functor :

type t

val map

val fold

val compare

 −→


type dn

val add

val find_all
val fold_pattern

Applied to Coq's constr

Primitives :

I add

I find_all

I fold_pattern

Allow to code many typical search problems. . .

Current Implementation

Head search

let search_concl pat =

possibly_under prod_pat

(search_pat pat) all_types

Search for equalities

let search_eq_concl pat =

possibly_under prod_pat

(under (eq_pat) (search_pat pat)

) all_types

Discrimination nets

Multiple variations

I Term/Pattern or Pattern/Term

I Full uni�cation

I Filtering modulo δ, β. . .

Numerous applications

I Rewriting systems

I E�cient proof search (Hints)

I Interactive search tools

To go further

I Use discrimination nets pervasively

I Relax the textual recognition (isomorphisms of types)

I Unify with all the other proof search frameworks

But also,

I Typeclasses were just a pretext, reify all meta-objects to gain
control.

To go further

I Use discrimination nets pervasively

I Relax the textual recognition (isomorphisms of types)

I Unify with all the other proof search frameworks

But also,

I Typeclasses were just a pretext, reify all meta-objects to gain
control.

