
Safe Incremental Type Checking

Matthias Puech
Department of Comp. Sci., Univ. of Bologna,

PPS, Team πr2 (Univ. Paris Diderot, CNRS, INRIA)
puech@cs.unibo.it

Yann Régis-Gianas
PPS, Team πr2 (Univ. Paris Diderot, CNRS, INRIA)

yrg@pps.jussieu.fr

Abstract
We study the problem of verifying the well-typing of terms, not
in a batch fashion, as it is usually the case for typed languages,
but incrementally, that is by sequentially modifying a term, and re-
verifying each time only a smaller amount of information than the
whole term, still ensuring that it is well-typed.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Data types and structures; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs — Logics of programs

General Terms Theory, Languages

Keywords incrementality, type checking, logical framework, ver-
sion control

1. Introduction
As programs grow and type systems become more involved, writ-
ing a correct program in one shot becomes quite difficult. On the
other hand, writing a program in many correct steps is the usual
practice when the time for verification is negligible; the verifica-
tion tool then rechecks the entire development at each step. But this
gets more tedious especially when the language in question con-
tains proof aspects, and verification involves proof search. Some
mechanisms already exist to cope with the incrementality of proofs
or program development: separate compilation, interactive toplevel
with undo, tactic languages; they all provide in different ways a
rough approximation of the process of modifying and checking in-
crementally a large term.

We propose here an architecture for a generic and safe in-
cremental type checker, a data structure for repositories of typed
proofs and a language for describing proof deltas. It is based on
the simple idea of sharing common subterms to avoid rechecking,
and exploits encoding a derivation in a metalanguage to guarantee
the well-typing of the result. This way, given a signature declaring
the typing rules and an (untrusted) typing algorithm for my lan-
guage of choice, I get an incremental type checker for that lan-
guage. The metalanguage approach gives us the ability to encode
all the aforementioned usual incrementality mechanisms in a type-
safe way, and more, making our system akin to a typed version
control system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI ’12 January 28 2012, Philadelphia, USA.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

2. Sharing-based incrementality
As a first example, let us consider a purposedly simplistic sorted
language of boolean and arithmetic expressions:

e, e′ ::= n | e+ e′ | e ∧ e′ | e ≤ e′

The algorithm to determine in a batch fashion whether the term

e1 = (1 + 3 ≤ 2 + 4) ∧ (8 ≤ 3)

is well-sorted is trivial (we don’t care about its evaluation here,
just its well-sortedness). But what if I then change subterm 2 + 4
in e1 into 7 ≤ 2 + 4, to obtain e2? Clearly, it should be verified
that context 7 ≤ [] is well-sorted (it is), that 2 + 4 “fits” into its
hole (it does), that the whole expression “fits” into its new context
(1 + 3 ≤ []) ∧ (8 ≤ 3) (it does not); but the other, unchanged
subterms need not be verified again. To achieve this incremental
verification, the system would have to “remember” the states of the
verifier in some way.

If only we had names (memory addresses, hashes) for enough
subterms of our initial term,

e1 = (

X︷ ︸︸ ︷
1 + 3 ≤

Y︷ ︸︸ ︷
2 + 4) ∧

Z︷ ︸︸ ︷
(8 ≤ 3) ,

we could express concisely the change as a delta

δ1 = (X ≤ (7 ≤ Y)) ∧ Z ,

using these names to refer to unchanged subterms. If only we had
annotated our initial term with the states of the verifier,

e1 = (

X:N︷ ︸︸ ︷
1 + 3 ≤

Y :N︷ ︸︸ ︷
2 + 4) ∧

Z:B︷ ︸︸ ︷
(8 ≤ 3) ,

we would have a simple process to verify e2 taking advantage
of e1’s derivation, in O(|δ2|): verify δ1 as a term, retrieving the
sort of names from a stored map. This suggests a data structure
for a repository of named, annotated, verified subexpressions: a
monotonously growing map, from names, or metavariables, to
terms and types, together with a head metavariable identifying the
top of the expression:

R ::= X,∆ where ∆ : (X 7→M : A) .

3. A metalanguage to encode derivations
What language are terms M and types A written into? Terms
should encode our expressions with metavariables, and types A
should encode the whole state of the batch verifier (here the sort).
An obvious choice is to take M ::= (e with metavariables) and
A ::= B | N, but switching to another language, we’d have to
redefine another repository language. Moreover, this choice is no
longer expressive enough when introducing binders. Another more
modular choice for this is the metalanguage LF [2]: it allows to
specify syntax and rules of an object language as a signature Σ,

and check terms against this signature with a generic algorithm.
We’ll use an increasing fragment of it. The so-called intrinsic style
of LF signature for our expression language is:

tp : ∗, nat : tp, bool : tp, exp : tp→ nat,
atom : N→ exp nat,
plus : exp nat→ exp nat→ exp nat,
and : exp bool→ exp bool→ exp bool,
leq : exp nat→ exp nat→ exp bool

In this style, both the encoding of an expression and its sort are
terms in the metalanguage, but the sort appears in the type of the
encoded expression. As an example, the repository associated with
expression e1 is

T,

 X 7→ plus 1 3 : exp nat
Y 7→ plus 2 4 : exp nat
Z 7→ leq 8 3 : exp bool
T 7→ and (leqX Y) Z : exp bool


The dependent nature of types in LF allows to express more

complex languages. We can for example add functions, applica-
tions and variables to our expressions in a purely first-order style
(using de Bruijn indices for variables) if we annotate them not only
with sorts but with an environment of free variables:

exp : env→ tp→ ∗,
atom : ΠE : env. N→ exp E nat,
var : ΠE : env. ΠA : tp. var E A→ exp E A,
leq : ΠE : env. exp E nat→ exp E nat→ exp E bool,
lam : ΠE : env. ΠA,B : tp. exp (cons A E) B

→ exp E (arr A B)
. . .

The encoded expressions are however very verbose: each term con-
structor takes as argument all these annotations. We can nonethe-
less make these information implicit in terms (but explicit in types)
and let a reconstruction algorithm infer them, as in [3]. This recon-
struction is language-dependent, user-provided but does not impair
the safety of the system for the whole term is still checked after-
wards.

LF promotes the use of lambda-tree syntax to represent binders:
instead of encoding the syntax first-order, it uses the λ binder
built in LF to encode binders in the object language. This style
of encoding has the advantage of making the manipulation of the
environment (weakening, exchange. . .) implicit in the deltas, but
raises new challenges for the delta language and the verification
process: how to share a subterm underneith a lambda? How to
efficiently verify that such a delta is well-typed?

4. Expressivity
Aside from enabling to encode a large class of deductive systems
safely and generically, the metalanguage approach allows to ex-
press incrementality features usually implemented in an ad-hoc
manner, simply by adding new constants to the signature.

Version control Suppose we want to implement an undo system,
storing successive versions of a closed expression of sort bool and
able to rollback to a previous version. We add constants

version : ∗, vnil : version,
vcons : exp nil bool→ version→ version

to the signature. The empty repository is now represented as vnil.
Each time we have pushed a full expression M , and if S was the
previous head (a version called its ancestor), we push vconsM S.
This gives us a data structure for an undo stack, and a commit algo-
rithm. But the sharing inherent to our repositories lets us actually
represent trees of versions, by sharing common stack tails, each
list head being a branch. Reconciling two branches’ changes into a

unique head is called merging in version control system’s terminol-
ogy: a merge is a version with several ancestors. We can represent
merges by revising our previous addition to the signature into

version : ∗, ancestors : ∗, anil : ancestors,
acons : version→ ancestors→ ancestors,
vcons : exp nil bool→ ancestors→ version

This defines a data structure to represent (acyclic) graphs of ver-
sions; it is the exact data structure of repository used by version
control systems Git, Monotone and Mercurial (see e.g. [1]) except
that where they have directories and text files we have arbitrary
typed terms.

Top-down construction While our system is based on bottom-up
term construction, we can encode top-down construction common
to some programming environments (e.g. Agda) and tactic-based
proof assistants (e.g. Coq). The user constructs terms by succes-
sively filling holes with terms containing other holes. To add (lin-
ear) holes to our expressions, add constant

hole : ΠE : env. ΠA : tp. exp E A

to the signature. To instantiate a hole with an expression, commit
the substituted term preserving sharing of subterms.

5. Architecture
We can implement this system following a layered architecture.

The kernel is the component in charge of verifying terms against
a signature and a repository, and updating this repository. It sup-
ports two basic operations:

• pushΣ(R,M) checks a small part M of a larger term against
Σ inR, synthetizes its type A, chooses a fresh metavariable X
for M and returnsR[X 7→M : A] and X .

• pullΣ(R, X) returns the termM associated withX inR recur-
sively: all metavariables are unfolded to their definitions.

The slicer is the component in charge of slicing a term M
into many terms, pushing them to the repository to enable future
sharing, and adding version markers. It supports operations:

• commitΣ(R,M) pushes vcons M (acons X anil) to R in
several push() operations, where X is the current head.

• mergeΣ(R,M, Y) pushes vconsM (aconsX (acons Y anil))
toR. Note that it doesn’t actually perform the merge, it simply
commits a previously computed merge node with value M .

The reconstructor performs the reconstruction of the derivation
(an M) from the initial expression (an e), given the derivations for
its metavariables (anR), and the expected type (exp nil bool), and
commits M .

Finally, the compressor computes a delta e′ from a metavariable-
free expression e by recognizing equal subterms inR. This can be
achieved by hash-consing.

References
[1] S. Chacon. Git community book. The Git Community, 2009. URL

http://book.git-scm.com/.
[2] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.

Journal of the Association for Computing Machinery, 40(1):143–184,
1993.

[3] G. Necula and P. Lee. Efficient representation and validation of proofs.
In Logic in Computer Science, 1998. Proceedings. Thirteenth Annual
IEEE Symposium on, pages 93–104. IEEE, 1997.

