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Abstract We present the first typeful implementation of Normalization
by Evaluation for the simply typed λ-calculus with sums and control
operators:
– we guarantee type preservation and η-long, β-normal forms using

only Generalized Algebraic Data Types in a general-purpose pro-
gramming language, here OCaml; and

– we account for sums and control operators with Continuation-Passing
Style.

First, we implement the standard NbE algorithm for the implicational
fragment in a typeful way that is correct by construction. We then derive
its call-by-value continuation-passing counterpart, that maps a λ-term
with sums and call/cc into a CPS term in normal form, which we express
in a typed dedicated syntax. Beyond showcasing the expressive power of
GADTs, this investigation leads us to deriving, thanks to type inference,
novel encodings of the syntax and typing of normal forms, most notably
in continuation-passing style.

1 Introduction

A normalization function need not be reduction-based and rely on reiterated
one-step reduction, according to some strategy, until a normal form is obtained,
if any. It can be reduction-free, and, as pioneered by Berger and Schwichten-
berg [12], one can obtain it by composing an evaluation function (towards a
non-standard domain of values) together with a left-inverse reification function
(towards normal forms). The concept of this ‘normalization by evaluation’ (the
term is due to Schwichtenberg [11]) arose in a variety of contexts: intuition-
istic logic [2,20,43], proof theory [12], program extraction [10], category the-
ory [14,21,46], models of computation [38], program transformation [26], partial
evaluation [22,30], etc. [25]. It has been vigorously studied since [1,6,9,40,49].

Normalization by evaluation (NbE for short) has taken a new significance
since Grégoire’s PhD thesis [35,36] as the reduction engine in the Coq proof
assistant [13].1 It is what makes proofs by reflection practical in Coq today, and
in Gonthier’s words [34], proofs by reflection are what made it possible to prove
the four-colour theorem. There is therefore a renewed interest in NbE today [15].

In this article, we propose a formalization of NbE for the simply-typed λ-
calculus with sums and control operators in the general-purpose language OCaml
in such a way that the type system guarantees two key properties:
1 The command Compute in Coq triggers a call to Coq’s reduction engine.



– NbE produces normal forms: the resulting term is in β-short-η-long normal
form; and

– NbE is type-preserving : if the evaluation function is in direct style, the type
of the resulting term is the same as the type of the source term; and if the
evaluation function is not in direct style, the two types are not the same but
they are related, as developed in Sec. 4.

In Sec. 4, we also extend our formalization to a language with sums and control
operators. To this end, we use continuation-passing style (CPS for short), still in
a typeful manner. We use CPS not only on terms but also on types to establish
that the resulting terms are indeed normal forms in continuation-passing style.

Throughout, we use Generalized Algebraic Data Types (GADTs for short), a
generalization of ML algebraic data types that allows a fine control on the return
type of their constructors [18,47]. We use them to represent the types and the
well-typed terms of the simply-typed λ-calculus, and to relate them to the types
of values and of normal forms.

Faithful formalizations of NbE in direct style already exist in languages with
dependent types like Coq [32]. Instead, we chose a general-purpose programming
language with type inference. Our programming language of discourse is OCaml,
which now provides support for GADTs [33], but we could have adopted any
other functional programming language with this feature, e.g., Haskell. Alterna-
tively, we could have used any other language by encoding GADTs [48] or by
using a finally tagless representation of terms [17,42]. Our choice of using GADTs
seems simpler in the sense that it enables a methodology where the code is left
essentially unchanged, and only the types are refined.

Outline The remainder of this article is an incremental, literate programming ex-
position of our implementation.2 We first recall and motivate our starting points:
the representation of types, terms, and values in OCaml, the standard NbE al-
gorithm for the implicational fragment in direct style, and GADTs (Sec. 2). We
annotate the standard NbE program to obtain a typeful implementation in direct
style, that we put to use for the partial evaluation of printf directives (Sec. 3).
We CPS-transform this typeful implementation, obtaining another typeful imple-
mentation that yields typed normal forms in continuation-passing style (Sec. 4).
This continuation-passing typeful implementation is ready to be extended with
sums and control operators.

2 Background

2.1 Deep and shallow embeddings

Since NbE manipulates types, terms and values of the λ-calculus, we need to
represent all of them in our programming language of discourse, OCaml. When
embedding a language into another, one has two possibilities: a deep embedding
or a shallow embedding.
2 We will however allow ourselves to reorder code snippets for pedagogical purpose.
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In a deep embedding, to each construct of the language corresponds a con-
structor of a data type; we have access to the structure of terms, and we can
define functions over them by structural recursion. The types and terms of the
λ-calculus in OCaml can be encoded this way: one data type representing simple
types

type tp = Base (∗ Some base type ∗)
| Arr of tp ∗ tp

and another one for terms. For concision, we use a weak (or parametric) HOAS
representation of binders [19], where variables belong to an abstract type, and
are introduced by a function in OCaml:3

type tm = Var of x
| Lam of (x → tm)
| App of tm ∗ tm

and x (∗ The variable namespace, uninstantiated for now ∗)

In a shallow embedding, we directly use OCaml constructs to represent con-
structs in the object language: we lose structural recursion, but we enjoy the
property that two equivalent terms in OCaml are indistinguishable. The values
of the λ-calculus can be encoded this way: functions are represented as a univer-
sal function space, and we reuse OCaml variables and applications syntax nodes.
Then, all β-equivalent values are observationally equal.

type base (∗ Some base type, uninstantiated for now ∗)
type vl = VFun of (vl → vl)

| VBase of base

Example 1. The term λfx. f x is represented as Lam (fun f → Lam (fun x →
App (Var f, Var x))) in the deep encoding of terms, and as VFun (fun (VFun f)
→ VFun (fun x → f x)) in the shallow encoding of values.

2.2 Normalization by Evaluation

NbE normalizes deeply embedded terms by going through a shallow embedding:
an evaluation function maps a deep term to its shallow counterpart, which is then
reified back into a deep term. Since βη-convertible terms are indistinguishable
at the shallow level, reification has to pick the same representative for two βη-
equivalent terms (in practice, the η-long β-normal form, which implies that the
result is in normal form).

First, the evaluation function maps deep application nodes into OCaml ap-
plications:

let rec eval : tm → vl = function
| Var x → x

3 First-order presentations like de Bruijn indices are also common, and have been
showed to be isomorphic to HOAS [5].
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| Lam f → VFun (fun x → eval (f x))
| App (m, n) → match eval m with
| VFun f → f (eval n)
| VBase _ → failwith "Unidentified␣Functional␣Object"

Variables are substituted with their value in the second case; to this end, we
must instantiate their namespace to the type of values, allowing the constructor
Var to quote values into terms:

and x = vl

The expressible values vl are shallow, weak head normal forms. The second
step consists in reifying them back into an algebraic language of deep terms, or
normal forms nf, that can be inspected by pattern matching:4

and nf = NLam of (x → nf)
| NAt of at

and at = AApp of at ∗ nf
| AVar of x

We then define the reification function reify, taking a value and its type to a
normal form, together with its inverse function, reflect. They can be seen as
a two-level η-expansion at the given type [28]. This η-expansion stops at base
type, which means that values of base type are actually atoms:

and base = Atom of at

In other words, atoms are the intersection of the set of shallow and deep values,
reflecting the fact that values contain both functions and atoms.

All of this leads us to the usual definition of reification and reflection:

let rec reify : tp → vl → nf = fun a v → match a, v with
| Arr (a, b), VFun f → NLam (fun x → reify b (f (reflect a (AVar x))))
| Base, VBase v → let (Atom r) = v in NAt r
| _ → failwith "type␣mismatch"

and reflect : tp → at → vl = fun a r → match a with
| Arr (a, b) → VFun (fun x → reflect b (AApp (r, reify a x)))
| Base → VBase (Atom r)

Finally, NbE maps a term together with its type to a normal form, by composing
evaluation and reification:

let nbe : tp → tm → nf = fun a m → reify a (eval m)

Notice that exceptions might be triggered at runtime if the given term and
type do not match. In Section 3, we solve this problem by statically enforcing
this match, thanks to GADTs.

4 To proscribe the representation of β-redexes, we follow the tradition and stratify the
syntax into normal forms nf (λ-abstractions) and atoms at (applications).
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2.3 GADTs in OCaml

The recent introduction of Generalized Algebraic Data Types [18,47] in OCaml
[33] makes it possible to declare data types that are indexed by types, e.g., to
write tagless interpreters. Let us illustrate GADTs with the problem of format-
ting strings à la printf in a type-safe way, following Kiselyov [41].

What is the type of the printf function in the C programming language?
A priori it is dependent: the number of arguments depends on the structure of
the first argument, the formatting directive. The first author proposed a solution
based on polymorphism [23], encoding the formatting directive algebraically as
a sequence of literal strings and typed placeholders (written "%d", "%s", etc.
in C); GADTs provide a tighter fit. Let us introduce the type of formatting
directives, respectively indexed by α, the final type returned by printf, and β,
the expected type of printf when applied only to the directive:

type (α, β) directive =

These two types coincide when the directive consists only of a literal: no extra
argument is then required. We thus explicitly mention the annotation after the
argument in the constructor type:

| Lit : string → (α, α) directive

When the directive is a placeholder, we add an argument to the expected type
of printf (these constructors take no arguments):

| String : (α, string → α) directive
| Int : (α, int → α) directive

Finally, the sequence of two directives threads the initial and final types, much
like function composition:

| Seq : (β, γ) directive ∗ (α, β) directive → (α, γ) directive

After spreading some syntactic sugar, let us try out this definition with an
example directive ("%d+%s=%d" in C):

let (^^) a b = Seq (a, b) and (!) x = Lit x and d = Int and s = String
let ex_directive : (α, int → string → int → string → α) directive =
d ^^ !"␣∗␣" ^^ s ^^ !"␣=␣" ^^ d ^^ !"␣in␣" ^^ s

Its type reflects the structure of the formatting directive: an integer is expected,
and then a string, and then an integer, and then a string, and then the result is
whatever it needs to be.

Now, all printf needs to do is to map a directive into a usual OCaml primitive
function. We first define it in continuation-passing style, and then we apply it
to the initial continuation print_string, which will emit the formatted string
eventually:

let rec kprintf : type a b. (a, b) directive → (string → a) → b =
function
| Lit s → fun k → k s
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| Int → fun k x → k (string_of_int x)
| String → fun k x → k (string_of_string x)
| Seq (f,g) → fun k → kprintf f (fun v → kprintf g (fun w → k (v^w)))

let printf dir = kprintf dir print_string

Function string_of_string here is the identity. Compared to the previous solu-
tion [23], which used one polymorphic function per abstract-syntax constructor
of the formatting directive, the dispatch among the constructors is grouped,
thanks to GADTs.

Our test directive yields a type-safe printing command:

(∗ prints "6 ∗ 9 = 42 in base 13" ∗)
let () = printf ex_directive 6 "9" 42 "base␣13"

3 Typeful Normalization by Evaluation in Direct Style

Thanks to GADTs, we can decorate the algebraic data types of terms and nor-
mal forms with their types, such that only well-typed ones can be represented.
This way, the NbE algorithm of Sec. 2.2 can ensure statically that: i) no ex-
ception is triggered at runtime; ii) well-typed terms are mapped to well-typed
normal forms; and iii) η-long normal forms are produced. We then illustrate this
normalizer with a partial evaluator that is guaranteed to preserve the type of
the programs it specializes.

3.1 Evaluation

It is a standard use of GADTs to index terms—deep or shallow—by the OCaml
type of their interpretation. First, values can be indexed as follows (we will come
back to the definition of type base later on):

type α vl = VFun : (α vl → β vl) → (α → β) vl
| VBase : base → base vl

Similarly for terms:

and α x = α vl
type α tm = Lam : (α x → β tm) → (α → β) tm

| App : (α → β) tm ∗ α tm → β tm
| Var : α x → α tm

The evaluation function now has type α tm → α vl, ensuring type preservation:

let rec eval : type a. a tm → a vl = function
| Var x → x
| Lam f → VFun (fun x → eval (f x))
| App (m, n) → let VFun f = eval m in f (eval n)

Because the match between types and terms is ensured statically, there is no
need for any exception as in Sec. 2.2. Otherwise, the code is the same.
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Remark 1. Evaluation could also have been tagless, and thus more efficient [16]:
we could have defined directly type α vl = α, but we did not do so to be co-
herent with Sec. 4. Also, the finally tagless approach [17] can alternatively im-
plement typeful NbE without GADTs [42], but that requires significant changes
compared to the previous, untyped version: there, evaluation and reification are
not recursive functions but define the syntax of terms and types.

3.2 Reification

In the same way, we can index atoms and normal forms with the shallow type
of their interpretations:

and α nf = NLam : (α x → β nf) → (α → β) nf
| NAt : base at → base nf

and α at = AApp : (α → β) at ∗ α nf → β at
| AVar : α x → α at

In addition to being β-normal, the restriction of the at coercion to a base type
guarantees that terms of this data type are also η-long [4].

We then need to statically relate our deep types tp with these annotations.
To this end, we can index them by the OCaml type of their denotation:

type α tp = Base : base tp
| Arr : α tp ∗ β tp → (α → β) tp

The reification function now has type α tp → α vl → α nf: given a deep
type tp whose corresponding shallow type is α, and a value of type α vl, reify
yields a normal form α nf:

let rec reify : type a. a tp → a vl → a nf = fun a v → match a, v with
| Arr (a, b), VFun f → NLam (fun x → reify b (f (reflect a (AVar x))))
| Base, VBase v → let (Atom r) = v in NAt r

and reflect : type a. a tp → a at → a vl = fun a r → match a with
| Arr (a, b) → VFun (fun x → reflect b (AApp (r, reify a x)))
| Base → VBase (Atom r)

As in Sec. 3.1, because the match between types and terms is ensured statically,
there is no need for any exception as in Sec. 2.2. Otherwise, the code is the same.

Let us now address the definition of base. As before, its values should contain
atoms: at base type, terms are interpreted by atoms [32]. But one question
remains: what is the type of atoms in the interpretation of the base type? Let
us call this type X and let us rely on the implementation as a guideline. In the
base case of reflect, the type of r is refined to base at, and the expected type
is base. Since Atom makes an base from an X at, we must have X = base.
Similarly in the base case of reflect, the type of v is base, so r has type X at,
at r has type X nf. Since the awaited type is base nf, we must have X = base.
The definition of type base is thus:

and base = Atom of base at
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This type has no closed inhabitants: they are only constructed and deconstructed
during reification and reflection.

Finally, composing evaluation and reification, we obtain typeful NbE, which
is guaranteed to map well-typed terms to well-typed normal forms of the same
type:

let nbe : type a. a tp → a tm → a nf = fun a m → reify a (eval m)

It can be read as a cut elimination theorem for intuitionistic logic, apart from
termination which is not ensured by OCaml.

3.3 Application: printf, revisited

This section presents an application combining ideas from above: the offline
specialization of printf with respect to a formatting directive, using NbE as a
partial-evaluation engine. It will specialize the program:

fun x y z t →
printf ex_directive x y z t

into the normal form:

fun x y z t →
string_of_int x ^ "␣∗␣" ^ y ^ "␣=␣" ^ string_of_int z ^ "␣in␣" ^ t

in which ex_directive has been inlined and its processing has been simplified.
This specialization is guaranteed to preserve types.

In Sec. 2.3, kprintf was mapping directives to the standard domain of OCaml
primitive types. The idea here is to replace the primitive functions (concatenation
(^), string_of_int, string_of_string) by a non-standard, syntactic model.
By reifying the evaluated program, we obtain a residual term in normal form.

First, we enlarge our representation of atoms (the type α at) with these
primitive functions and uninterpreted objects of the types involved (to allow
values of different types, we index the type base with a type variable, without
consequence on its definition):

and α at = (∗ . . . ∗)
| APrim : α → α base at
| AConcat : string base at ∗ string base at → string base at
| AStringOfInt : int base at → string base at

Since we strictly extended the definition of atoms and reify and reflect do
not match on them, we can reuse these two functions from Sec. 3.2 as-is.

The primitive functions can now be interpreted as their residual expressions,
atoms, instead of as their standard meanings:

type int_ = int base at
type string_ = string base at
let string_of_string i = APrim i
let string_of_int x = AStringOfInt x
let (^) s t = AConcat (s, t)

8



The non-standard printf is the result of pasting at this point the code from
Sec. 2.3, replacing respectively types int and string by int_ and string_.

Example 2. Let us take this non-standard printf function, apply it to our ex-
ample formatting directive and reify the result at the type of the function:

let residual =
let box f = VFun (fun (VBase (Atom r)) → f r) in
reify (Arr (Base, Arr (Base, Arr (Base, (Arr (Base, Base))))))
(box (fun x → box (fun y → box (fun z → box (fun t →

reflect Base (printf ex_directive x y z t))))))

We obtain the specialized program building the final string: residual is the
normal form mentioned above.

Remark 2. NbE is type-directed, which leads to a completely offline partial eval-
uator: there is no need to explicitly check at each step of the program whether
its result is statically known or not. It differs in that sense from the online par-
tial evaluator proposed by Carette et al. [17]. Note that we could nonetheless
perform online simplifications in our non-standard primitive functions [24].

4 Typeful Normalization by Evaluation in CPS

In Sec. 3.1, we defined an evaluation function for our object language. It was con-
cise, but leaves no choice of evaluation order or definable control structures: they
are inherited from the programming language of discourse, OCaml. In particular,
it does not scale seamlessly for disjoint sums and not at all for call/cc:

sums: There is no simple notion of unique normal form for the λ-calculus with
sums because of commuting conversions. NbE with sums was nevertheless
developed with delimited control operators [22,31,40] and constrained rep-
resentations of unique normal forms were developed as well [3,7]. Here, we
bypass delimited control operators by writing the evaluation function in CPS,
and we accept that normal forms are defined modulo commuting conversions.

call/cc: Now that the evaluation function is written in CPS, it is simple to
handle call/cc, and the resulting normalization function can immediately be
used for programs extracted from classical proofs [27,45].

In this section, we show how to define typeful CPS evaluation and reifica-
tion for the simply-typed λ-calculus with boolean conditionals and call/cc. Our
continuation-passing evaluation function maps source terms to continuation-
passing values that await a continuation, and allows us to choose the evaluation
order and to extend our source language. As in Sec. 3.2, we can then reify these
continuation-passing values to a dedicated syntax of normal forms in CPS.

We present the formalization in call by value; the call-by-name variant can
be obtained mutatis mutandis.
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4.1 Typing CPS values

When evaluating in CPS a term of type A, it is well-known [39,44] that its
denotation is typed by the CPS-transformed type dAe, defined by:

dAe = (bAc → o)→ o bpc = p

bA→ Bc = bAc → dBe bboolc = bool

where p is a base type, o is the type of answers, and bool is the type of Booleans.
The call-by-value transformation can be encoded in the following GADT:

type α vl = VFun : (α vl → β md) → (α → β) vl
| VBase : base → base vl
| VBool : bool → bool vl

and α md = (α vl → o) → o

The type o of answers is left unspecified for the moment. Note that the codomain
of a function of type (α → β) vl expects a continuation (i.e., has type β md).
For instance, the CPS-transformed identity is written as follows:

let id : type a. (a → a) vl = VFun (fun x k → k x)

4.2 Evaluation

Let us now extend the syntax of terms with an if statement and with call/cc:

type α tm = (∗ . . . ∗)
| If : bool tm ∗ α tm ∗ α tm → α tm
| CC : ((α → β) → α) tm → α tm

Their typing is standard; in particular, call/cc has the type of Peirce’s law [37].
Values of type bool are encoded as, e.g., Var (VBool true) (remember that we
have α x = α vl).

Now, function eval directly maps an α tm to an α md. Its code can be ob-
tained by CPS-transforming eval in Sec. 3.1 with the extra cases:

let rec eval : type a. a tm → a md = function
| Var x → fun c → c x
| Lam f → fun c → c (VFun (fun x k → eval (f x) k))
| App (m, n) → fun c → eval m (fun (VFun f) → eval n (fun n → f n c))
| If (b, m, n) → fun c → eval b (fun (VBool b) →

if b then eval m c else eval n c)
| CC m → fun c → eval m (fun (VFun f) → f (VFun (fun x _ → c x)) c)

The if case is of no surprise, and could as well have been defined in direct style.
The call/cc case captures the continuation c into a closure, as customary.
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4.3 Reification

Now that the domain of reify, i.e., the values α vl, is in the image of the CPS
transformation, we can CPS-transform the reification function of Sec. 3.2 as well.
The types of reify and reflect will thus be respectively α tp → α vl → (α nf
→ o) → o and α tp → α at → (α vl → o) → o. Consequently, the constructor
NLam now takes a CPS-transformed function of type α x → β k → o, where
α k = α v → o and α v = α nf.

Because of the latter function space, this data type is not a proper weak
HOAS. But we can leave types α k and α v abstract—call these respectively
continuation and value variables:

type α k and α v

and treat the answer type o algebraically, i.e., instantiate it by all the operations
involving continuation and value variables. There are two of them: applying an α
k to a normal form in reify—call it SRet, and binding a value to an application
in reflect—call it SBind (previous applications become just value nodes AVal).
We are left with the type declarations:

and o = SRet : α k ∗ α nf → o
| SBind : (α → β) at ∗ α nf ∗ (β v → o) → o

and α nf = NLam : (α x → β k → o) → (α → β) nf
| NAt : base at → base nf

and α at = AVar of α x
| AVal of α v

This typed syntax is in weak HOAS since the domains of functions are abstract.
It has in fact been used since the late 1990’s [8] to characterize normal forms in
CPS. Terms of type o are traditionally called serious terms after John Reynolds.
Note that they do not carry a type like α nf and α at since they form the type
of answers; instead, its constructors act as existentials, linking together types of
normal forms, variables and atoms.

Before displaying the code, let us extend the development to Booleans. First,
we add the extra case to the type α tp:

type α tp = (∗ . . . ∗) | Bool : bool tp

Then, we add the constructors and conditional constructs respectively to normal
forms and serious terms:

and o = (∗ . . . ∗) | SIf : bool at ∗ o ∗ o → o
and α nf = (∗ . . . ∗) | NBool : bool → bool nf

At last, the full definition of reify and reflect with Booleans reads:

let rec reify : type a. a tp → a vl → (a nf → o) → o =
fun a v → match a, v with
| Arr (a, b), VFun f → fun c → c (NLam (fun x k →

reflect a (AVar x) (fun x → f x (fun v →
reify b v (fun v → SRet (k, v))))))
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| Base, VBase (Atom r) → fun c → c (NAt r)
| Bool, VBool b → fun c → c (NBool b)

and reflect : type a. a tp → a at → (a vl → o) → o =
fun a x → match a, x with
| Arr (a, b), f → fun c → c (VFun (fun x k →

reify a x (fun x → SBind (f, x, fun v →
reflect b (AVal v) (fun v → k v)))))

| Base, r → fun c → c (VBase (Atom r))
| Bool, b → fun c → SIf (b, c (VBool true), c (VBool false))

Similarly to the direct-style version, it can be seen as a two-level η-expansion, this
time performing the expansion rules of CPS with sums [29]. This fact dictates the
treatment of conditionals in the last line: they are serious terms, and duplicate
the context c in their two branches.

As an epilogue, we compose evaluation and reification to obtain normaliza-
tion. Unlike the direct case, where a value was reified into a normal form, a CPS
value is reified as a serious term abstracted by an initial continuation. At top
level, NbE in CPS thus returns such an abstraction:

type α c = Init of (α k → o)
let nbe : type a. a tp → a tm → a c = fun a m →

Init (fun k → eval m (fun m → reify a m (fun v → SRet (k, v))))

5 Summary and Future Work

We have presented the first typeful implementation of NbE for the simply-typed
λ-calculus in the minimalistic setting of a general-purpose programming lan-
guage with GADTs. To the best of our knowledge, our implementation is the
first one to ensure by typing that its output is not only in β-normal form, but
also in η-long form. We have illustrated how NbE achieves partial evaluation by
specializing a typeful version of printf with respect to any given formatting di-
rective. By CPS-transforming our typeful implementation, we have obtained sys-
tematically the syntax and typing rules of normal forms in continuation-passing
style. Finally, we have presented the first typeful implementation of NbE for the
simply-typed λ-calculus with sums and control operators in the same minimal-
istic setting. This normalization function can be used for programs extracted
from classical proofs, and the resulting normal form can then be mapped back
to direct style.

Future work includes developing a version of NbE that is parameterized by
an arbitrary monad (i.e., not just the identity monad or a continuation monad).
In this version, the non-standard evaluation function will be monadic. Monadic
reification with effect preservation seems like a tall order, but given a monad,
reification towards a (well-typed but non-monadic) normal form seems in sight: it
could be achieved using the type transformation associated to this given monad;
a monadic version of the direct-style transformation would then be necessary to
map this non-monadic normal form to a monadic normal form. Such a monadic
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version of NbE would make it possible to normalize programs whose effects can
be described with monads, e.g., probabilistic or stateful computations.
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