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Abstract. It is well known in proof theory that sequent-calculus proofs
differ from natural deduction proofs by “reversing” elimination rules up-
side down into left introduction rules. It is also well known that to
each recursive, functional program corresponds an equivalent iterative,
accumulator-passing program, where the accumulator stores the contin-
uation of the iteration, in “reversed” order. Here, we compose these re-
marks and show that a restriction of the intuitionistic sequent calculus,
LJT, is exactly an accumulator-passing version of intuitionistic natural
deduction NJ. More precisely, we obtain this correspondence by applying
a series of off-the-shelf program transformations a la Danvy et al. on a
type checker for the bidirectional A-calculus, and get a type checker for
the X-calculus, the proof term assignment of LJT. This functional cor-
respondence revisits the relationship between natural deduction and the
sequent calculus by systematically deriving the rules of the latter from
the former, and allows us to derive new sequent calculus rules from the
introduction and elimination rules of new logical connectives.

1 Introduction

A typical introductory course to proof theory starts by presenting the two calculi
introduced by Gentzen [9]: first natural deduction, that defines the meaning of
each logical connective by its introduction and elimination rules, and then the
sequent calculus, an equivalent refinement of the latter that makes it easier to
search for proofs. Natural deductions admit a bidirectional reading: introduction
rules are read bottom-up, from the conclusion, and elimination rules are read
top-down, from the hypotheses. Sequent calculus is then presented as a response
to this cumbersome bidirectionality, by turning all elimination subproofs upside
down : introductions are renamed “right rules”, upside-down eliminations
become “left rules”, and they operate directly on formulae in the environment I,
instead of operating on the goal of their premises.

This kind of inversion of control is performed routinely by functional pro-
grammers: a piece of data traversed recursively might be turned upside down
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Fig. 1: From natural deductions to sequent-calculus proofs

to be traversed iteratively. For instance, a recursive function computing the ex-
ponent tower of a list can be transformed in a tail-recursive function
carrying an accumulator; only, in this case, the list must be reversed first (be-
cause exponentiation is not commutative) and the value for the base case, here
1, must be passed at the top level. Not only are these two programs equivalent,
but one can always derive the second from the first.

The analogy is even clearer from the other side of the Curry-Howard looking
glass. Tt is well known since Herbelin’s work [TOJIT]| that a restriction of intu-
itionistic sequent calculus LJ named LJT can be viewed as a type system for the
A- or spine-calculus, a language in which consecutive eliminations are reversed
with respect to the usual A-calculus, the variable case being accessible at the
top level. Recently, Espirito Santo lifted the restriction [7], and presented two
isomorphic calculi corresponding to full LJ. Both authors posed a pair of calculi,
respectively in natural-deduction and sequent-calculus style, and showed how to
translate a given term from one to the other.

We propose here a method to systematically derive, not a particular proof,
but the inference system of an intuitionistic sequent calculus itself from the rules
of an intuitionistic natural deduction, by means of only off-the-shelf program
transformations, in the style of Danvy and colleagues [1]: take NJ, presented as
a recursive type-checking program for the bidirectional A-calculus, turn it into
an equivalent accumulator-passing style program, and you will get a type checker
for A-terms, which are notations for LJT proofs. In other words, we show that
LJT is precisely to NJ what tower_acc is to tower_rec. We conclude that, in
the light of functional-programming techniques, we can reinterpret Gentzen’s
discovery of sequent calculus as a “compilation” of natural deduction.

let rec tower_rec = function let rec tower_acc acc = function

-1 10— ace
| x :: xs = x ™" tower_rec xs | x :: xs — tower_acc (x ** acc) xs
let tower xs = tower_rec xs let tower xs = tower_acc 1 (List.rev xs)
(a) a recursive function (b) in accumulator-passing style

Fig.2: From a recursive function to its accumulator-passing equivalent



In we present this transformation step-by-step, in OCaml:

— CPS transformation, showing that eliminations are head recursive,

— lightweight defunctionalization, reifying the continuations into spines,

— reforestation, decoupling the checking of a term from its reversal, and intro-
ducing an intermediate data structure: A-terms.

For the sake of conciseness, this transformation is performed in NJ with a re-
stricted set of connectives; in we show that it is modular, i.e., that it
applies to richer situations, by exhibiting example extensions.

2 The Transformation

2.1 NJ and the Bidirectional A-calculus

The starting point of our transformation is a standard type checking algorithm
for NJ proofs of propositions built out of the following connectives (this choice
is discussed in the next section):

AB := ADB|AVB|AAB|p

The terms we assign to NJ proofs are not however those of the usual A-calculus,
but of a bidirectional extension of it [I6l3] . Bidirectional typing was
devised initially as a method for partial type inference. The idea is to judge
differently two classes of A-terms, those checkable (whose type is supposed to be
an input of the type-checking algorithm) and those inferable (whose type can be
synthesized by the algorithm).

This distinction can be reflected back syntactically by stratifying the syn-
tax of terms (as in, e.g., [14]) into two categories: general terms M, N, whose
checking requires to know their type, and atomic terms R, whose type can be
synthesized. An atomic term is a term, since if we can infer its type, we can check
that it is equal to a given type, hence the coercion from M to R and rule ATOME|
Dually, every term can be made atomic provided we are given its expected type,
hence the typing annotation construct (M : A) and rule ANNOT. Variables are
inferable since their type can be read off the environment. Eliminations are too,
provided their principal premise is inferable, and its conclusion is a subterm of
it; all other constructs are “only” general terms. Since the A-abstractions are
checked, they do not require type annotations (rule LAM; this omission was the
original motivation of bidirectional type checking).

This stratification has another interpretation: one can see the bidirectional
calculus as a reorganization of the syntax of the A-calculus concentrating on
rederes. In the A-calculus, redexes are the combination of matching introduc-
tions and eliminations. Here, we restrict principal premises of eliminations to

1 Often, you will find this rule restricted to atomic types, e.g., in [3], which ensures
n-long canonicity. We are not concerned by this restriction here.



M,N = Az.M | inl(M) | inr(M) | (M,N) | case R of (z. M | z. M) | R
R = RM ‘ m1(R) | m2(R) ’ z ! (M - A)

I'FM<«< A Checking

Lam INL
I'z:AFrM < B I'-M<A
X M«<ADB I'Finl(M) < AV B
Inr Pair ATom
reM«<A I'M<A TI'tN<«<B I'CR=C
I'kinr(M) < AV B I'-(M,N)«<AAB TFR<C
CASE

I'-R=AVB I''z: AFM<=C I'y:BEFN<C
I'+-case Rof (z. M | y.N) < C

I'FR=A Inference

VAR PiL Pir

r:Ael I'-R=AAB I'tR=AAB

T'Fz= A I'tm(R)= A I'tm(R)= B

ApPp ANNOT

I'-R=ADB I'-M< A I'-M<=A
I'FRM=RB '-(M:A)=A

Fig. 3: The bidirectional NJ/A-calculus

be other eliminations or variables, creating no redexes, or type annotationﬂ
Consequently, to construct a bidirectional term with a redex, we must use the
annotation, for instance (Az. M : A — B) N. Conversely, a term that does not
use this construct is canonical; such a term can be seen as a notation for inter-
calations [19]. Note that there are more non-canonical bidirectional terms than
there are equivalent A-terms [6], since we can always add type annotations, e.g.,
(x M : A D B) N instead of + M N. Note also that an atomic term has no
more than one direct atomic subterm, since an elimination has no more than
one principal premise; hence, we will sometimes call them chains of elimina-
tions. A (general) term which has a direct atomic subterm, i.e., a coercion R or
an elimination case R of (x. M | y. N), will be called a full chain.

is a transliteration of this algorithm into OCaml, a metalanguage
more suitable for program transformations. For concision, we use pattern-matching

2 Note that V-eliminations are not allowed as principal subterms of an elimination,
since they could “hide” a redex (a commutative cut). The same remark would apply
to e.g., L or 4.



typea =At|Impofa xa|Andofa x a|Orofa x a

type var = string

type env = (var x a) list

type m = Lam of var x m | Pair of m x m | Inl of m | Inr of m

| Case of r X var x m x var X m | Atom of r

and r = App of r x m | Pil of r | Pir of r | Var of var | Annot of m X a

let rec check env ¢ : m — unit =

let rec infer : r — a = function

| Var x — List.assoc x env

| Annot (m, a) — check env am; a

| App (r, m) — let (Imp (a, b)) = infer r in check env am; b

| Pilr — let (And (a, )) = infer rin a

| Pirr — let (And (_, b)) = inferrinb

in fun m — match m, ¢ with

| Lam (x, m), Imp (a, b) — check ((x, a) :: env) bm

| Pair (m, n), And (a, b) — check env a m; check env b n

| Inlm, Or (a, ) — check envam

| Inrn, Or (_, b) — check envbn

| Case (r, x, m, y, n), c — let (Or (a, b)) = infer r in
check ((x, a) :: env) ¢ m; check ((y, b) :: env) cn

| Atom r, ¢ — match infer r with ¢’ when c=c’ — ()

Fig. 4: Initial program, i.e., in OCaml (module Initial)

failure to signal a typing error. Function infer is written in lambda-dropped
form, to emphasize that its recursive calls are in the scope of the same environ-
ment env and expected type c. It is only called in non tail-recursive position: its
code begins by recursively descending all the way to the bottom of a chain of
eliminations. Only then does it synthesize the type of the atomic term, “on the
way back”. Alternatively, we could traverse this chain in reverse order, accumu-
lating the synthesized types. It is precisely what we embark on doing.

2.2 CPS Transformation

The first two steps of our transformation could be considered a unique, com-
pound one called “algebraic CPS transform” since its popularization by Danvy
et al. [BUI]. Its goal is to turn the recursive program above—it needs a stack,
implicit in the metalanguage, to store intermediate results—into a deterministic
state transition system, a simpler metalanguage where this stack is reified. Here
however, we only perform this transformation selectively, on function infer but
not on check, since we are only interested in reversing atomic terms.

The first step is to turn every call to infer into a tail-recursive one, by
applying Plotkin’s standard call-by-value CPS transformation [I7] (we show only
the modified lines).



let rec check env ¢ : m — unit =
let rec infer : r — (a — unit) — unit = fun r s — match r with
| Var x — s (List.assoc x env)
| Annot (m, a) — check env am; s a
| App (r, m) — infer r (fun (Imp (a, b)) — check env am; s b)
| Pil r — infer r (fun (And (a, )) — s a)
| Pir r — infer r (fun (And (_, b)) — s b)
infunm— (*... %)
| Case (r, x, m, y, n), c — infer r (fun (Or (a, b)) —
check ((x, a) :: env) ¢ m; check ((y, b) :: env) c n)
| Atom r, ¢ — infer r (function ¢’ when c=c’ — ())

We add an extra functional argument s to infer, which is called with its
result; recursive calls “chain up” the computation to be done at return time.
Consequently, all calls to infer are tail calls. Note the answer type of infer:
it is fixed by the return type of check, which is unit. All calls to infer are
done directly after pattern-matching: the function is head recursive (doing all
the work “on the way back”).

The CPS transformation trades one feature of the metalanguage—the ability
to store intermediate results on a stack—into another—the ability to have func-
tions as first-class values. Yet, in what follows, we map back such a higher-order
program into a first-order one.

2.3 Lightweight defunctionalization

The second step is a variant of defunctionalization, as showcased by Danvy
and Nielsen [5], which takes a program with first-class functions and returns
an equivalent one where these functions have been reified into purely first-order
data. The idea is to replace every such inner function by a unique identifier
(a type constructor in our case), and all application of a functional variable £
by apply f, where apply is a “dictionary” mapping identifiers to the function
they stand for. Each inner function can have free variables, so each constructor
needs to be parameterized by the values of these free variables. Lightweight
defunctionalization [2] restricts this set of parameters: free variables that are
in scope of both introduction and elimination of functions do not need to be
parameters. In our case, both env and c are “constant” throughout all recursive
calls to infer, and need not be saved in constructors.

We thus introduce the type s of spz'nesﬂ we call SCase, SAtom, SApp, SPil and
SPir the respective continuations of the previous program. Then we transform
our program accordingly, introducing function apply:

type s =
| SAtom
| SPil of s
| SPir of s

3 We motivate the choice of this name in [Section 2.5



| SCase of var x m x var X m
| SApp of m x s

let rec check env ¢ : m — unit =

let rec apply : s X a — unit = function
| SApp (m, s), Imp (a, b) — check env a m; apply (s, b)
| SPil s, And (a, ) — apply (s, a)
| SPir s, And (_, b) — apply (s, b)
| SCase (x, m, y, n), Or (a, b) —

check ((x, a) :: env) ¢ m; check ((y, b) :: env) c n

| SAtom, ¢’ when c=c’ — () in

let rec infer : r = s — unit = fun r s — match r with
| Var x — apply (s, List.assoc x env)
| Annot (m, a) — check env a m; apply (s, a)
| App (r, m) — infer r (SApp (m, s))
| Pil r — infer r (SPil s)
| Pir r — infer r (SPir s)

infunm— (*... %)
| Case (r, x, m, y, n), c — infer r (SCase (x, m, y, n))
| Atom r, ¢ — infer r SAtom

We uncurried apply on-the-fly for legibility. Note that defunctionalization pre-
serves tail calls: function infer is still tail-recursive.

Because all inner functions transformed stemmed from CPS, s is the type of
reified continuations. Because the original type checker traverses the whole term
structure, these can be seen as the type of zippers [12] or contexts of atomic terms:
a pair (r, s) : r X s determines uniquely an atomic position inside an atomic
term S[R]. CPS and defunctionalization decomposed the recursive process in
two parts: what is done “on the way down” of an atomic term traversal (function
infer), accumulating a continuation s, and what is done “on the way back”,
(function apply), reading off this continuation in reverse order. Since infer was
head recursive, our transformed infer is a simple reversal function that takes an
atom to a spine, and eventually calls apply with this spine. Function apply now
actually performs the type synthesis; the impatient reader can already interpret
this function as the second judgment of but a final step is needed to reach
our target.

2.4 Reforestation

This type checker is a strange hybrid: given a term m, it checks its type until
arriving to a full chain (check), which it reverses into a spine s (infer), which in
turn is type-checked (apply). In the last step, we decouple completely reversal
and checking so that, given a term m, we can first reverse it completely, and
only then check its type. The transformation comprises two reforestation steps.
Reforestation is the inverse of Wadler’s deforestation [20]: instead of eliminating
intermediate data structure for efficiency by “chaining up” function calls, we



reintroduce an intermediate data structure of reversed terms from “chained up”
function calls.

The first reforestation concerns infer: it “lifts up” the computation done in
its base cases (Var and Annot) outside it, at its call sites. To this end, infer
needs to return an intermediate data structure, that we call a head h, repre-
senting algebraically the computation to be done in these two base cases, each
parameterized by their free variables:

type h =
| HVar of var x s
| HAnnot of m x a x s

A new head function is introduced, that plays the same role as apply in the
defunctionalization step: it maps an “algebraic base case” h to the computation
it stands for. Previous call sites to infer now perform the composition of the
new infer and head functions. It reads:

let head : h — unit = function
| HVar (%, s) — apply (s, List.assoc x env)
| HAnnot (m, a, s) — check env a m; apply (s, a) in

let rec infer : r =+ s — h = fun r s - match r with
| Var x — HVar (x, s)
| Annot (m, a) — HAnnot (m, a, s)

(... *)infunm — (*... %)

| Case (r, x, m, y, n), ¢ — head (infer r (SCase (x, m, y, n)))
| Atom r, ¢ — head (infer r SAtom)

In Wadler’s words, this program is not in “treeless form”, because of these
function compositions. Applying deforestation to it, we would get back the pro-
gram of the last section. The type h of heads represents reversed full chains: if
we were to construct a full chain out of thread and pearls , reversing
it would amount to hold it, not by its top-level node (a Case or an Atom) but
by its bottom node (a Var or an Annot) and letting all nodes hang loose un-
derneath; the whole atomic spine would be reversed, top-level nodes becoming
bottom nodes (SCase and SAtom) and bottom nodes becoming top-level nodes
(HVar and HAnnot).

Interleaved checking and reversal are still not completely decoupled, so we
perform one final reforestation, on function check. Again, we “lift up” the calls
to infer in the base cases (Case and Atom) outside of check, at the top level.
To this end, we introduce the intermediate data structure v of reversed terms,
on the model of m but replacing constructors Case and Atom by a unique VHead
constructor. Since check, head and spine are mutually recursive, so are the final
types v, h and s. Function check is decomposed in two passes, one taking an m
to an intermediate v (rev), and one actually checking the resulting v (check).
The resulting code is shown on [Fig. 6 For better readability, we renamed infer
into rev_spine, and apply into spine. Again, if we deforest this program, the
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Fig.5: Reversing a full chain into a head

intermediate data structure v vanishes, and both passes are merged into one and
we get back the previous type checker.

The transformation is now over, and our goal is achieved: the resulting pro-
gram check is the composition of reversal rev and checking check. Checking
is more space-efficient than the original one, because we made function infer
tail-recursive, with an accumulator storing the synthesized type. The top-level
function is observationally equivalent to the original program: we traded stack
space for an intermediate data structure of “reversed” terms.

Theorem 1. Initial.check env c m is defined iff Final.check env ¢ m is defined.
Proof. By composition of the soundness of the transformations.

However, decoupling these two phases offers the opportunity to study the
intermediate data structure unveiled.

2.5 LJT and the X-calculus

Let us transliterate back data structures v, h and s and functions check, head and
spine into BNF syntax and inference rules, a metalanguage more suitable for
logical interpretation. presents this syste It is precisely the A-calculus
of Herbelin [TOJTT], a proof term assignment for LIT. LJT is a restriction of the
sequent calculus LJ, with features of focusing [13].

Reversed terms V' contain all introductions, and two “structural” constructs:
variables and type annotations, both attached to a spine S of eliminations.
This spine is terminated by a - (“nil”), or a case construct. When restricted

4 With two small differences: we inlined type h and function head for compactness,
and lambda-lifted all inner functions.



type v = VLam of var x v | VPair of v x v | VInl of v | ViInr of v | VHead of h
and h = HVar of var x s | HAnnot of v x a X s
and s = SApp of v x s | SPil of s | SPir of s | SAtom | SCase of var X v X var X v

let check env ¢ : m — unit =
let rec rev_spine : r -+ s — h = fun r s — match r with
| Var x — HVar (x, s)
| Annot (m, 2) — HAnnot (rev m, a, s)
| App (r, m) — rev_spine r (SApp (rev m, s))
| Pil r — rev_spine r (SPil s)
| Pir r — rev_spine r (SPir s)
and rev: m — v = function
| Lam (x, m) — VLam (x, rev m)
| Pair (m, n) — VPair (rev m, rev n)
| Inl m — VInl (rev m)
| Inrn — Vinr (rev n)
| Case (r, x, m, y, n) — VHead (rev_spine r (SCase (x, rev m, y, rev n)))
| Atom r — VHead (rev_spine r SAtom) in
let rec check env ¢ : v — unit =
let rec spine : s X a — unit = function
| SApp (m, s), Imp (a, b) — check env a m; spine (s, b)
| SPil s, And (a, ) — spine (s, a)
| SPir s, And (_, b) — spine (s, b)
| SCase (x, m, y, n), Or (a, b) — check ((x, a) :: env) c m; check ((y, b) :: env) cn
| SAtom, ¢’ when c=c’ — () in
let head : h — unit = function
| HVar (x, s) — spine (s, List.assoc x env)
| HAnnot (m, a, s) — check env a m; spine (s, a) in
fun v — match v, ¢ with
| VLam (x, v), Imp (a, b) — check ((x, @) :: env) b v
| VPair (v, w), And (a, b) — check env a v; check env b w
| VInl v, Or (a, ) — checkenvav
| Vinr w, Or (_, b) — check env b w
| VHead h, ¢ — head h
in fun m — check env ¢ (rev m)

Fig. 6: Final program, i.e., in OCaml (module Final)

to its implicative fragment, this calculus is sometimes called a spine calcu-
lus |3]: applications can be viewed as n—aryﬂ i.e., applied to a list of arguments
[ (My,Ms, ..., M,,-), in contrast with the usual (((f My) M) ...) M, of NJ.
Espirito Santo [7] speaks of a difference of associativity of application. Generaliz-
ing to our extended fragment, the situation is more subtle: an elimination chain
is piled up in reverse order, and its head construct, a variable or an annotated

5 Note that partial application is still possible, since the length of this list can vary
and the return type C' in SATOM can be an arrow.
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V,W u= Az.V [ (V,W) | inl(V) | inr(V) | 2 (S) | (M : A)(S)
S ==V, S ‘ w1, S } o, S ’ case(z.V | y. W) | .
I'FV <A Right rules
VLAM VPAIR
I'z:AFrM < B I'-M< A I'-N<«<B

I'FXx.M<=ADB

VINL
I'EM< A
I'inl(M)< AV B

I't(M,N)<AAB

VINR
I'-M<«< B

I'inr(M)< AV B

HVar HANNOT
z:Ael I'ALS<C I'FM<«<= A I'ArS<C
'z (S)<cC I'-(M:A)(S)<C
I'ArsS<cC Focused left rules
SApp SPiL
r-veA ' BES<C 'ArS<«<C

I'ADBFRV,S<C ' ANBFm,S<C

SPIrR
I' BES<C

I'AANBFm,S<C

SCASE
I'z: ARV <C Iy:BFW <« C

I'f AVvBtcase(z.V |y W)<=C

SATOM
rcr.-<cC

Fig. 7: The LJT/A-calculus [10]

term that was buried under eliminations, is brought back at the top level. For
example, the full chain case m1(f z) of (x;. My | zo. M2) is now written with
the head variable f first: f (z (+), 1, case(x;. My | z2. M), ).

As promised, the typing rules are in Curry-Howard correspondence with a
sequent calculus-like system. Like the rules of they come in two judgments;
unlike them, no judgment infers a type: both are in checking mode. This fact
is a notable difference with the usual definition of spine-form calculi [3]: their
restriction to negative connectives makes possible to infer the types of spines,
which is impossible when extended with e.g., disjunction. The right rules are
unchanged with respect to except for two new rules: HVAR, sometimes
called Focus, which focuses on a particular premise (variable) and checks the
attached spine, and HANNOT, which corresponds to the usual CUT rule. In
“focused mode”; all rules act on a distinguished premise A (the stoup) hence their
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names: left rules. Once focused on a premise, these rules oblige us to continue
working on it until we can either close the branch by SATOM (usually called INIT)
or by a “polarity switch”, i.e., here when the stoup contains a disjunction. Tracing
the stoup back through the transformations, it corresponds to the accumulator
threaded in spine on which was the returned type of function infer on
In other words, the focused hypothesis of a left rule in LJT corresponds
to the principal premise of an elimination in NJ.

3 Extensions

Although we chose to start with a reduced set of logical connectives (A, V, D),
the same scheme extends to all connectives of intuitionistic predicate logic: T,
1,V, 3, as well as variants of these and related systems.

3.1 Multiplicative Connectives

For instance, taking the multiplicative definition of the conjunction via the
unique elimination:

[ A] [F B]

FAAB e
FC

CoNJE’

leads to the following normal term assignment (showing only the A, D fragment):

M,N == Xz.M | (M,N) |let (z,y) =Rin M | R
R == .7:|(M:A)’RM
Note that the let construct is a general term, for the same reason the case

construct was in Applying the same transform, we get the following

term assignment:
Vo= Az V (V. V) | 2(S) | (M:A)(S)|R
S = | M,S | (z,y). M

where the top-level let gets buried under the chain of eliminations, and the
corresponding checking rule:

ConNJL’
I'z:Ay:BrFM<=C

I'NAANBF (z,y). M < C

which is the usual left rule of the multiplicative conjunction. Note that the
premise loses the focus on the hypothesis, just like for disjunction. The same
system was proposed by Herbelin in his PhD thesis [I1].

12



3.2 Modal Logic of Necessity

Pfenning and Davies [I5] propose a reconstruction of modal logic in terms of
the Gentzen apparatus. They present the necessity modality O A (denoting the
necessity for A to be true under no hypotheses) as a connective defined by the
following introduction and elimination rules:

BoxI BoxE
A-FHA A T'FOA AATEC
A;T'FOA AT EC

The environment is split in two sets: I" and A, resp. the true and the necessarily
true assumptions. To use a necessary hypothesis, we add rule:

META

Ae A
A;TEA

The authors also propose a term assignment for these rules, that we easily make
bidirectional by stratification (again, the D, O fragment):

M == Az.M | box(M) | let box X=Rin M | R
Ru= (M:A)|z|xX|RM

Note the new set of metavariables X referring to necessary hypotheses. Again,
applying our transformation, we get the following reversed syntax:

V ou= Az V | box(V) | 2 (S) | X(S) | (M:A)(S)| R
S u= | M,S|x.M

The associated rules for the new syntactic constructs are the left and right rules
for necessity, and a focus rule for necessary hypotheses:

BoxR BoxL
A-FM: A AX:A;TEM:C
A;THbox(M):0OA A; D |OARX M : C
FocusM
X:Ae A AT |AES:C
A TEX(S): C

Seeing the stoup as a non-necessary hypothesis, and erasing all term information,
this system is the sequent calculus proposed by the authors [15].

3.3 Full Sequent Calculus

As we noted previously, LJT is a focused system: it is equivalent to LJ in terms of
provability but not all LJ proofs are represented. Espirito Santo [7] proposes two
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term assignments A\®% and Aa for resp. full LJ (without the focusing restriction)
and its corresponding natural deduction. This pair constitutes an interesting test
bed for the transformation. Let us start from Anat (restricted to the D fragment,
but easily extensible):

M ::
R :

x| Ae. M | M[z/R]
(M:A)|RM

It generalizes the previous bidirectional calculus by replacing the coercion from
M to R by a substitution M|z/ RHﬂ This construct corresponds to the cut rule:

Cur ANNOT
I'R= A I'z:ArM < B I'-M<« A
FI—M[z/R]<:B I'-(M:A)= A

Transforming the corresponding type checker amounts to turn eliminations R
upside down, putting annotation nodes at the top level and substitution nodes
at the bottom:

Vou=z | eV | (V:A)(9)
S =V,85 | z.V
Like in ), the annotation (M : A) becomes a “focusing cut” (V : A) (S); its “nil”

construct - however is replaced by a new binder x. M that allows losing the focus
on the stoup:

HANNOT UNFoOCUS
I'FV <A I'ArS<B I''z:A+-M < B
Ir'-(V:A)(S)<B F\AFm.M@B

It is precisely the calculus A% of Espirito Santo.

4 Conclusion

We presented a modular, semantics-preserving program transformation turning
a logical system presented in natural-deduction style into one in sequent-calculus
style. It achieves the systematic and simultaneous derivation of the “reversed”
term structure, the type checker (and thus the sequent rules) and the translation
function from one to the other. In particular, starting from a bidirectional pre-
sentation of the A-calculus, we ended up with the composition of a reversal func-
tion, taking A-terms to A-terms, and a type checker for A-terms, in accumulator-
passing style. The accumulator corresponds to the stoup, and is used to check

5 Also, a variable is a general, checked term, and not an atom as before; this shallow
difference only forces to put more type annotations to make it a bidirectional checking
algorithm.
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spines. Spines are contexts of atomic terms, which are checked contrarily to pre-
vious presentations, and were evidenced by CPS and defunctionalization. These
two steps can be seen as a form of (partial) compilation, since the computation
on spines is more direct than on atomic terms. Reforestation showed how spines
“plug into” reversed terms, and evidenced the final structure of A-terms.

Composing CPS and defunctionalization has many well-documented applica-
tions: it turns evaluation functions into abstract machines [1], and exhibits the
zipper [12], or one-hole context of a traversal [5]. Combined with deforestation,
it turns small-step into big-step semantics [4]. This scheme was recently used to
check types “by reduction” [18], but without the purpose of proof-theoretic inter-
pretation. To the best of our knowledge, the present work is the first application
of these techniques to proof theory.

One could rightfully argue that our starting point, the bidirectional A-calculus,
is only a notation for an eztension of NJ, and is already an important step toward
LJ. Indeed, it would be desirable to explain this extension similarly in terms of a
systematic program transformation. Besides, we showcased the behavior of our
transformation on a few known pairs of calculi; a natural continuation of this
work will be to apply it to other logics, in particular to get a better understand-
ing of focusing [I3]. For instance, LJQ [II] is dual to LJT in that its focus is
biased toward the conclusion, and not the hypotheses, and features a call-by-
value semantics where LJT reduces in call-by-name. Still, we do not know what
natural-deduction style calculus corresponds to LJQ |Z]; applying our transforma-
tion backwards could help finding out. Finally, another interesting application
concerns classical logic. In natural deduction it usually takes the form of a control
operators (call/cc), whereas it appears as a facility to switch between multiple
conclusions in sequent calculus. Will our transformation turn one presentation
into the other? Answering these questions will require an analysis of bidirectional
and canonical forms in these logics, that we leave for further investigation.
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